

Hesperidin and Polycystic Ovary Syndrome (PCOS): Molecular Protection Beyond Conventional Therapy

Sananda Sil and Sandip Chattopadhyay*

Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, India

* sandipdoc@mail.vidyasagar.ac.in

Received: Dec 23, 2025 | Accepted: Dec 28, 2025 | Published online: Dec 29, 2025

Abstract

Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine-metabolic disorder driven by complex interactions between ovarian dysfunction, insulin resistance, chronic inflammation, oxidative stress, and gut microbial dysbiosis. Current therapies address isolated symptoms and are often associated with adverse effects, prompting interest in bioactive natural compounds with multi-target potential. Hesperidin (HSP), a citrus flavanone widely investigated for its antioxidant, anti-inflammatory, metabolic, and immunomodulatory properties, has gained attention as a candidate for PCOS management. This review synthesizes experimental evidence demonstrating that HSP improves ovarian morphology, supports follicular development, modulates sex-steroid and gonadotropin profiles, and enhances oocyte developmental competence. HSP additionally attenuates oxidative injury, inflammatory cascades, and apoptosis in ovarian and metabolic tissues through regulation of Nrf2, NF-κB, Bax/Bcl-2, and caspase pathways. Metabolically, HSP improves insulin signaling, glucose tolerance, and lipid profiles while suppressing hepatic lipogenesis and promoting fatty acid oxidation. Recent studies further highlight its capacity to modify gut microbial composition, strengthen mucosal barrier function, increase short-chain fatty acid production, and reduce endotoxin-driven inflammation. Together, the findings indicate that HSP engages multiple mechanistic axes relevant to PCOS pathophysiology. However, clinical validation remains limited, underscoring the need for human trials to establish therapeutic applicability.

Keywords: PCOS, Hesperidin, Oxidative Stress, Insulin Resistance, Inflammation, Apoptosis, gut-biota

1. Introduction

PCOS is a complex endocrine condition marked by disrupted gonadotropin dynamics, elevated androgen levels, chronic anovulation, and ovaries containing multiple cystic follicles. It is frequently accompanied by metabolic disturbances, most notably insulin resistance (IR) (Hajam, et al., 2024). Estimates suggest that PCOS affects roughly 6–20% of women, with symptoms commonly appearing during early adolescence (Witchel, et al., 2019). Individuals with PCOS face higher risks of abnormal glucose metabolism of glucose and lipids, type 2 diabetes, endometrial malignancies, cardiovascular complications, and adverse gestational outcomes besides exerting significant burden on reproductive, metabolic, and psychological aspects (Witchel, et al., 2019). Although the underlying mechanisms of PCOS are still not fully understood, current findings emphasize the involvement of HPO axis, chronic oxidative stress and inflammation, insulin resistance, adipose tissue abnormalities and altered gut biota in pathophysiology of PCOS (Singh, et al., 2023). At present, no universally accepted therapeutic guideline exists for PCOS (Teede, et al., 2018; Escobar-Morreale, 2018). As PCOS is not fully curable, management relies on symptom specific pharmacotherapy, primarily hormonal agents, though these frequently cause side effects. Anti-androgens improve hirsutism and ovulation (De Leo et al., 1998; Moghetti, et al., 1994) but may induce hepatotoxicity (Castelo-Branco, et al., 2009). Combined oral contraceptives regulate cycles and

lower androgen excess (Mendoza, et al., 2014), yet long term use increases risks of IR, thrombosis (Gronich, et al., 2011), and menopausal concerns (Belisle & Love, 1986). Clomiphene citrate treats anovulatory infertility but can overstimulate the

ovaries, leading to multiple gestations (Brown & Farquhar, 2016). Thiazolidinediones enhance insulin sensitivity although it might cause weight gain and fluid retention (Legro, et al., 2013). Spironolactone reduces hirsutism (Tremblay, 1986) but often results in breakthrough bleeding (Sabbadin, et al., 2016).

In view of the constraints of current targeted treatments, naturally derived bioactive compounds have drawn growing interest for their therapeutic versatility (Malik, et al., 2024). These molecules often influence hormonal pathways and, being sourced from plants, microbes, or animal products, typically show good safety profiles. Many natural agents possess multiple biological activities, enabling them to act on various pathological processes simultaneously, an advantage in multifactorial condition like PCOS. When used alongside standard pharmacotherapies, they may enhance treatment outcomes, reduce adverse effects, and lower dependence on conventional drugs (Ataabadi et al., 2017; Yang et al., 2018; Rudic et al., 2022)

Hesperidin (HSP) is a citrus-derived bioflavonoid, a di-phenolic polyphenol with the molecular formula $C_{28}H_{34}O_{15}$, widely distributed in vegetables, herbs, legumes, and fruits. Its name originates from "hesperidium," the characteristic fruit type of citrus species (Li & Schluesener 2017). In plants, HSP

functions as a secondary metabolite contributing to defense against microbial pathogens such as fungi and bacteria (Del Río, *et al.*, 2004). Sweet oranges (*Citrus sinensis*) and tangelos are among the richest natural sources and are commonly used for HSP extraction, although recent evidence indicates that it can also be produced synthetically (Binkowska, 2020). This classical dietary polyphenol, HSP exhibits diverse biological activities, including antioxidant, anti-inflammatory, antitumor, anticancer, antidiabetic, anti-allergic, antiulcer and neuro-protective effects (Al-Rikabi, *et al.*, 2020; Welbat, *et al.*, 2020; Ahmadi & Shadboorestan, 2016; Xiong, *et al.*, 2019; Hanchang *et al.*, 2019).

The pharmacokinetics of HSP involve gut microbiota mediated cleavage of the rutinoside group post-citrus ingestion, yielding hesperetin aglycones with low-to-moderate bioavailability due to extensive conjugation, though exhibiting excellent safety profiles (Li, *et al.*, 2008; Sivaslioglu, & Goktas2024). HSP exhibits multi-target, multi-pathway actions across key pathological processes associated with PCOS, positioning it as a promising therapeutic candidate. The growing body of evidence on the effect of HSP in PCOS and related metabolic-reproductive disturbances provide a mechanistic foundation and expands future directions for PCOS management.

2. Mechanistic role of hesperidin in regulating PCOS associated pathophysiology

2.1. Effect of HSP on ovarian morphology, hypothalamic-pituitary-ovarian (HPO) axis and fertility

Ovulatory dysfunction is the most prevalent reproductive abnormality in PCOS, contributing to nearly 75% of cases and representing the leading cause of anovulatory infertility (Homburg, 2004). Although its exact mechanisms remain incompletely defined, Impaired folliculogenesis in PCOS arises largely from disruptions in the HPO axis, where altered gonadotropin and sex-steroid secretion impede normal follicular maturation (Cadagan, *et al.*, 2016). Granulosa cells are essential for oocyte support through glycolysis, show atresia, hypertrophy, and degeneration, leading to arrested follicular development and anovulation (Franks & Hardy, 2010).

Studies found HSP to restores ovarian structure and improves ovulatory competence in experimentally induced ovo-toxicity and letrozole-induced PCOS models by preserving follicular architecture, reducing follicular atresia, and promoting orderly progression through primary, secondary, preantral, and antral stages, ultimately expanding the functional ovarian reserve (Shoorei *et al.*, 2019; Zarein *et al.*, 2023; Taheri *et al.*, 2021; Andhalkar *et al.*, 2021).

An *in vitro* study by Shoorei *et al.*, reported HSP (50 μ mol/L) to improve follicle survival ($P<0.01$), enhanced antrum formation ($P<0.001$), and greater metaphase II oocyte yield ($P<0.05$) in 3D alginate cultures of preantral follicles. HSP induced dose-dependent increases in follicular diameter and elevated proliferating cell nuclear antigen (PCNA)

immunoreactivity, suggesting accelerated granulosa cell proliferation and maturation (Shoorei *et al.*, 2019).

Consistent with *in vitro* findings, HSP significantly increased primary, secondary, and antral follicle numbers while markedly lowering atretic follicle counts in malathion-exposed mice. These effects were accompanied by restored corpus luteum formation and improved stromal integrity, indicating restored ovarian histoarchitecture and improved functionality (Zarein *et al.*, 2023; Talebi *et al.*, 2024).

HSP also found to re-establishes homeostasis of HPO axis. In malathion treated animals, HSP restored the normal level of serum estradiol (E2), progesterone (P4), FSH, and LH ($P<0.001$) and normalized the LH/FSH ratio. These hormonal corrections corresponded with upregulated FSH receptor (FSHR) expression in granulosa cells (Zarein *et al.*, 2023). Another study showed, in letrozole induced PCOS rats, HSP restored LH:FSH ratio levels, normalized the serum level of E2 and P4, beside showing anti-androgenic effect and attenuated polycystic ovarian morphology by increasing antral follicles and decreasing atretic and cystic follicles ($P<0.05$) (Andhalkar *et al.*, 2021).

A recent finding by Shoorei *et al.*, demonstrated, HSP (50 μ mol/L) to improve *in vitro* fertilization (IVF) success ($P < 0.05$), with significantly greater progression to the 2-cell, 4-cell, morula, and blastocyst stages following fertilization with epididymal spermatozoa in 3D alginate hydrogel cultures of isolated preantral mouse follicles. Post-fertilization analyses showed that HSP-treated metaphase II oocytes displayed improved pronuclear formation, symmetrical blastomere cleavage, and more consistent cavitation patterns. These developmental advantages corresponded with dose-dependent increases in follicular diameter and improved zona pellucida structure, indicating enhanced cytoplasmic maturation and developmental competence (Shoorei *et al.*, 2019).

Earlier mid-20th-century claims that phosphorylated hesperidin impaired fertility through hyaluronidase inhibition are not supported by contemporary evidence. Modern studies instead demonstrate that native HSP at physiologically beneficial concentrations (~ 50 μ mol/L) supports cumulus-oocyte complex expansion and acrosomal function, rather than impairing them (Shoorei *et al.*, 2019). Although, to date, no human clinical trials have directly evaluated the effect of HSP on controlled ovarian stimulation outcomes, oocyte yield, embryo quality, implantation, or live birth rates.

2.2. Ameliorative effect HSP on oxidative, inflammation and apoptosis

The pathogenesis of PCOS is critically driven by oxidative stress, chronic low-grade inflammation, and granulosa cell apoptosis, which collectively disrupt folliculogenesis and HPO axis regulation (Ouyang *et al.*, 2025). Elevated reactive oxygen species (ROS) in PCOS ovaries impairs granulosa cell steroidogenesis, accelerates follicular atresia via Bax upregulation and Bcl-2 downregulation, and exacerbates IR, while NF- κ B-mediated TNF- α /IL-6 release promotes hyperandrogenemia and cyst formation (Liu *et al.*, 2025). This vicious cycle amplifies apoptosis through caspase-3/9

activation and mitochondrial dysfunction, reducing ovarian reserve and ovulatory competence (Wang *et al.*, 2025)

HSP exhibits potent antioxidative activity by scavenging ROS, suppressing lipid peroxidation, and enhancing endogenous antioxidant defences. This includes upregulation of key antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and replenishing reduced glutathione (GSH), thereby restoring redox homeostasis (Tirkey *et al.*, 2005; Adefegha *et al.*, 2017; Chen *et al.*, 2024a).

In experimentally induced pleurisy by carrageenan, oral administration of HSP (80 mg/kg for 21 days) significantly decreased pleural exudate formation, leukocyte infiltration, and myeloperoxidase (MPO) activity. These improvements were paralleled by reductions in ROS fluorescence, along with restoration of non-protein sulphydryl (NPSH) groups and δ -aminolevulinic acid dehydratase (δ -ALAD) activity, biomarkers typically suppressed during acute oxidative injury (Adefegha *et al.*, 2017).

Mechanistically, HSP activates the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which promotes transcription of antioxidant enzymes, while concurrently suppressing NADPH oxidase 4 (NOX4) via upregulation of sirtuin 1 (SIRT1). This dual modulatory action has been demonstrated in nickel-induced hepatorenal toxicity models, where HSP reduced malondialdehyde (MDA) accumulation, inhibited apoptotic cell death, and enhanced SOD, CAT, and GPx activities (Ji *et al.*, 2024).

HSP mitigates chronic inflammation primarily through suppression of NF- κ B signaling and downstream pro-inflammatory cytokines, including TNF- α and IL-6, thereby limiting neutrophil activation, chemotaxis, and tissue infiltration. In toxin- or drug-induced organ injury models, such as cyclophosphamide hepatotoxicity and metal or drug induced nephrotoxicity, HSP significantly downregulated NF- κ B and p65 activation and reduced transcription and translation of TNF- α and IL-6, which translated into attenuated inflammatory cell infiltration and improved tissue architecture (Subramanian *et al.*, 2015; Zhou *et al.*, 2019). Similarly, in models of nanoparticle or bleomycin induced lung and brain injury, HSP reduced oxidative-inflammatory signaling by inhibiting I κ B α degradation, decreasing NF- κ B nuclear translocation, and concomitantly lowering pro-inflammatory cytokines, supporting its role as a systemic anti-inflammatory modulator (Zhou *et al.*, 2019; Al-Rikabi *et al.*, 2020).

In malathion-induced ovarian toxicity models, HSP restored ovarian histoarchitecture by downregulating pro-apoptotic markers such as Bax and NF- κ B and upregulating the expression of the anti-apoptotic protein Bcl-2. Additionally, HSP modulated key microRNAs, including miR-129-3p and miR-96-5p, contributing to the attenuation of inflammation-associated granulosa cell apoptosis (Talebi *et al.*, 2024).

Evidence from cyclophosphamide- and irradiation-induced ovarian injury further demonstrates the role of HSP in preserving granulosa and theca cell integrity, reducing activation of caspase-3 and caspase-9, and limiting follicular atresia by exerting antioxidative and anti-apoptotic effects (Chen *et al.*, 2024b). At the molecular level, HSP

suppresses apoptotic signaling by modulating Bax/Bcl-2 ratio, inhibiting caspase activation, and reducing PARP cleavage, which are hallmark events for initiating and executing apoptosis. HSP also suppresses transcription factors like specificity protein 1 (Sp1), which modulates cell proliferation and survival genes, contributing further to its anti-apoptotic effect (Aggarwal *et al.*, 2020). In dihydrotestosterone exposed granulosa cell models, hesperidin reduced intracellular ROS, decreased pro-apoptotic signaling, and maintained cell viability even under experimental JAK2 activation or PI3K inhibition, indicating that its protective effect involves fine tuning of these pathways rather than nonspecific antioxidant action (Zhang *et al.*, 2025a). By restoring PI3K/AKT signaling and restraining aberrant JAK2/STAT3 activation, HSP attenuates ROS driven inflammatory responses and apoptosis in granulosa cells, thereby linking its systemic antioxidant and anti-inflammatory properties to localized ovarian protection and improved follicular survival in PCOS (Zhang *et al.*, 2025a).

These mechanisms highlight multi-targeted approach of HSP to protect ovarian follicles from oxidative stress, inflammation and apoptosis, thereby maintaining follicular viability and improving ovarian function.

2.3. Effect of HSP on IR and glucose homeostasis

Approximately 50–70% of women with PCOS exhibit IR (IR) (Legro *et al.*, 2013). The resulting hyperinsulinemia disrupts follicular growth by impairing glucose uptake and reducing glycolytic energy production in granulosa cells. Excess insulin also elevates circulating androgens by stimulating LH release through the insulin receptors and by suppressing sex hormone-binding globulin (SHBG) synthesis. Moreover, IR contributes to dyslipidemia by downregulating lipid droplet associated proteins in adipocytes (Houston *et al.*, 2025). Thus, IR serves as a central pathological link between the reproductive and metabolic disturbances characteristic of PCOS.

HSP ameliorates IR and restores glycemic balance predominantly in high-fat diet (HFD)-induced obesity and hyperglycemia models, with progressive reductions in fasting blood glucose, random blood glucose, circulating insulin, and improved homeostatic model assessment for IR (HOMA-IR), while not inducing hypoglycemia in normoglycemic controls (Peng *et al.*, 2021; Rehman *et al.*, 2020). At the molecular level, HSP found to enhances insulin signaling by activating the insulin receptor/phosphoinositide-dependent kinase-1 (PDK1) pathway in adipocytes and hepatocytes, increasing IR phosphorylation and PDK1 phosphorylation, resulting in an 11–61% dose-dependent enhancement of glucose uptake in 2-deoxyglucose assays, independent of changes in total IR or PDK1 protein expression (Peng *et al.*, 2021).

In high-glucose-exposed LO2 hepatocytes, HSP restored insulin sensitivity by promoting AKT/GSK3 β phosphorylation, upregulating glucose transporters expression including GLUT2/GLUT4 and insulin receptor substrate-1 (IRS1), while enhancing antioxidant defenses (SOD/GPx) and reducing ROS and MDA levels thereby improving mitochondrial redox status and normalizing glucose metabolic flux via boosted

glucokinase and suppressed glucose-6-phosphatase/PEPCK (Tian *et al.*, 2021). Concurrently HSP found to correct hyperglycemia and androgen excess, in experimentally induced PCOS in animal model, supporting its utility in IR-dominant PCOS phenotypes (Andhalkar *et al.*, 2021). However, a clinical trial demonstrated modest glycemic improvements, with meta-analytic evidence showing a nonsignificant reduction in fasting plasma glucose (FPG) across 8 RCTs (Shams-Rad *et al.*, 2020).

2.5. Effect of HSP on dyslipidemia and obesity

Epidemiological data indicate that 38–88% of women with PCOS are overweight or obese (Barber *et al.*, 2019). Excess adiposity increases lipolysis and circulating free fatty acids (FFA), impairing insulin-dependent glucose uptake and contributing to IR. Obesity further drives adipocyte hypertrophy, cell death, and elevated pro-inflammatory cytokine production (Guilherme *et al.*, 2008). This metabolic dysregulation manifests as dyslipidemia, characterized by elevated triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and reduced high-density lipoprotein cholesterol (HDL-C) in 70% of PCOS patients, exacerbating cardiovascular risk through atherogenic lipid profiles and impaired reverse cholesterol transport (Wild *et al.*, 2011).

HSP improves dysregulated lipid metabolism and mitigates obesity in HFD induced hyperlipidemia and non-alcoholic fatty liver disease (NAFLD) models by lowering circulating TC, TG, and LDL-C, reducing hepatic lipid deposition, and elevating HDL-C in rodent models, alongside significant body weight reduction and decreased fat mass (Xiong *et al.*, 2019; Liu *et al.*, 2024; Morshedzadeh *et al.*, 2023). Consistently HSP showed corrective effect on dyslipidemia in cadmium chloride exposed rats and also found with a hepatoprotective effect (Aja *et al.*, 2020). These effects are mediated by suppression of de novo lipogenesis, downregulating the transcription and translation of SREBP-1c, ACC, and FAS and enhancement of fatty acid β -oxidation via upregulation of PPAR- α and CPT-1, reducing hepatic lipid accumulation, VLDL secretion, and adiposity (Mosqueda-Solís *et al.*, 2018; Liu *et al.*, 2024). Mechanistically, HSP activates the AMPK pathway, leading to ACC phosphorylation and reduced malonyl-CoA, thereby relieving inhibition of CPT-1 and promoting mitochondrial fatty acid oxidation. HSP further modulates lipid transport by regulating transcripts such as RBP, H-FABP, and C-FABP, contributing to reduced VLDL output and diminished LDL oxidation via boosted PON-1 activity while suppressing obesogenic gut microbiota shifts (Wang *et al.*, 2011; Liu *et al.*, 2024).

Clinical meta-analyses similarly show modest yet significant reductions in TC and TG at doses ≥ 500 mg/day over 4–12 weeks across 12 RCTs, while serum LDL-C and HDL-C appear variable (5–15% inconsistent gains), with body weight effects remaining understudied in humans indicating dose- and duration-dependent benefits in dyslipidemic individuals (Heidari *et al.*, 2025).

2.6. Effect of HSP on gut-biota

The human gut harbors approximately 10^{14} microorganisms, predominantly Firmicutes and Bacteroidetes (Faith *et al.*, 2013). In PCOS, both α - and β -diversity are reduced, accompanied by disturbances in the Firmicutes/Bacteroidetes ratio (Hanna *et al.*, 2025). Such dysbiosis compromises intestinal barrier integrity, facilitating LPS translocation into circulation, which promotes chronic inflammation, IR, and obesity (Ghosh *et al.*, 2020). Altered gut microbiota can also disrupt gut–brain axis signaling, including GABA pathways, contributing to excessive GnRH and LH secretion (Yao *et al.*, 2015). Thus, gut microbial imbalance is a key pathogenic factor in PCOS development and progression.

HSP reported to significantly enhance microbial α -diversity, enriches beneficial commensals such as *Lactobacillus* spp., and reduces pathobionts under conditions of HFD induced dysbiosis or xenobiotic injury (Liu *et al.*, 2024; Yang *et al.*, 2024). In healthy and HFD-fed rodents, HSP increases the proportion of IgA-coated bacteria, elevates intestinal secretory IgA levels, expands TCR $\alpha\beta^+$ lymphocyte populations in mesenteric lymph nodes, and strengthens gut-associated lymphoid tissue (GALT), reflecting an immunomodulatory, prebiotic effect (Estruel-Amades *et al.*, 2019).

These microbial and immune changes are accompanied by marked restoration of intestinal barrier integrity through upregulation of tight-junction proteins such as ZO-1 and occludin, reduced gut permeability, and attenuation of circulating inflammatory cytokines including TNF- α , IL-6, and IL-1 β (Liu *et al.*, 2024; Wang *et al.*, 2025). Crucially, fecal microbiota transplantation (FMT) from HSP-treated donors to naïve HFD fed mice recapitulates the metabolic improvements and decreased systemic inflammation (Liu *et al.*, 2024). Beyond obesity, HSP and its aglycone hesperetin also rectify microbial dysbiosis and attenuate IL-17 and TLR4/NF- κ B-driven inflammatory injury in models of irinotecan-induced mucositis, colitis, and other epithelial barrier disruptions, further highlighting its role in maintaining mucosal immune tolerance and epithelial resilience (Zhang *et al.*, 2025b; Wang *et al.*, 2024; Ran *et al.*, 2024). *In vitro* anaerobic fermentation studies show that hesperidin and related flavanones significantly alter microbial metabolic outputs including enhanced short-chain fatty acid (SCFA) synthesis—while interacting synergistically with dietary fibers such as RG-I pectins to modulate community structure and improve microbial fermentation efficiency (Pan *et al.*, 2023; Wu *et al.*, 2024). Related compounds such as neohesperidin similarly mitigate HFD induced colitis and rebalance SCFA producing bacteria (Lu *et al.*, 2025), suggesting conserved microbiota-targeted activity across citrus flavanones. Collectively, these findings support hesperidin as a microbiota-mediated therapeutic candidate capable of restoring eubiosis, strengthening intestinal barrier function, and reducing endotoxin-induced inflammatory signaling—mechanisms directly linked to LPS-driven metabolic inflammation, IR, and ovarian dysfunction central to PCOS pathophysiology. Despite strong preclinical support, human trials evaluating the microbiome-modulatory effects of HSP in PCOS populations are lacking, representing a key translational opportunity.

3. Conclusion

Collective evidence positions hesperidin as a biologically versatile compound capable of intervening at several critical nodes of PCOS pathophysiology. By simultaneously mitigating oxidative stress, inflammatory activation, metabolic dysfunction, and granulosa-cell apoptosis, while also improving folliculogenesis and hormone homeostasis, HSP addresses both reproductive and metabolic features of the disorder in a manner unmatched by most current pharmacotherapies. The growing recognition of the gut–ovarian axis in PCOS further elevates the significance of HSP's microbiota-modulating actions, including restoration of microbial diversity, tightening of epithelial barrier function, and suppression of LPS-mediated systemic inflammation. These convergent effects suggest that HSP may function not merely as an adjunctive antioxidant but as a multi-axis regulator capable of influencing the endocrine, metabolic, and immune pathways that sustain PCOS.

Nevertheless, the majority of evidence arises from in vitro and animal models. Translation into clinical practice will require rigorous human studies that define optimal dosing, bioavailability enhancing formulations, pharmacokinetics, and long-term safety. While preliminary findings are promising, establishing HSP as a therapeutic option for PCOS will depend on closing these translational gaps through well-designed clinical investigations.

4. Acknowledgements

The authors have no acknowledgments to declare

5. References

Adefegha, S. A., Rosa Leal, D. B., Olabiyi, A. A., Oboh, G., & Castilhos, L. G. (2017). Hesperidin attenuates inflammation and oxidative damage in pleural exudates and liver of rat model of pleurisy. *Redox Report*, 22(6), 563-571.

Aggarwal, V., Tuli, H.S., Thakral, F., Singh, P., Aggarwal, D., Srivastava, S., Pandey, A., Sak, K., Varol, M., Khan, M.A. and Sethi, G., 2020. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. *Experimental Biology and Medicine*, 245(5), 486-497.

Ahmadi, A., & Shadboorestan, A. (2016). Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. *Nutrition and cancer*, 68(1), 29-39.

Aja, P. M., Ekpono, E. U., Awode, J. N., Famurewa, A. C., Izekwe, F. I., Okoro, E. J., Okorie, C. F., Orji, C. L., Nwite, F., Ale, B. A., Aku, A. F., Igwenyi, I. O., Nwali, B. U., Orji, O. U., Ani, O. G., Ozoemena, C. R., & Anizoba, G. C. (2020). Hesperidin ameliorates hepatic dysfunction and dyslipidemia in male Wistar rats exposed to cadmium chloride. *Toxicology reports*, 7, 1331–1338.

Al-Rikabi, R., Al-Shmgani, H., Dewir, Y. H., & El-Hendawy, S. (2020). In vivo and in vitro evaluation of the protective effects of hesperidin in lipopolysaccharide-induced inflammation and cytotoxicity of cell. *Molecules*, 25(3), 478.

Andhalkar, S., Chaware, V., Redasani, V. (2021). Evaluation of Protective Role of a Hesperidin on Letrozole induced Polycystic Ovarian Syndrome (PCOS) in Female Rats. *International Journal of PharmTech Research*, 14(1), 186-198.

Ataabadi, M. S., Alaee, S., Bagheri, M. J., & Bahmanpoor, S. (2017). Role of essential oil of *Mentha spicata* (Spearmint) in addressing reverse hormonal and folliculogenesis disturbances in a polycystic ovarian syndrome in a rat model. *Advanced pharmaceutical bulletin*, 7(4), 651.;

Barber, T. M., Hanson, P., Weickert, M. O., & Franks, S. (2019). Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies. *Clinical Medicine Insights: Reproductive Health*, 13, 1179558119874042.

Belisle, S., & Love, E. J. (1986). Clinical efficacy and safety of cyproterone acetate in severe hirsutism: results of a multicentered Canadian study. *Fertility and Sterility*, 46(6), 1015-1020.

Binkowska, I. (2020). Hesperidin: Synthesis and characterization of bioflavonoid complex. *SN Applied Sciences*, 2(3), 445

Brown, J., & Farquhar, C. (2016). Clomiphene and other antiestrogens for ovulation induction in polycystic ovarian syndrome. *The Cochrane database of systematic reviews*, 12(12), CD002249.

Cadagan, D., Khan, R., & Amer, S. (2016). Thecal cell sensitivity to luteinizing hormone and insulin in polycystic ovarian syndrome. *Reproductive biology*, 16(1), 53-60.

Castelo-Branco, C., & Del Pino, M. (2009). Hepatotoxicity during low-dose flutamide treatment for hirsutism. *Gynecological Endocrinology*, 25(7), 419-422.

Chen, J., Fan, X., Chen, J., Luo, X., Huang, X., Zhou, Z., He, Y., Feng, S., Jiao, Y., Wang, R. and Ji, M. (2024). Effects of hesperidin on the histological structure, oxidative stress, and apoptosis in the liver and kidney induced by NiCl₂. *Frontiers in Veterinary Science*, 11, 1424711.

Chen, H., Nie, P., Li, J., Wu, Y., Yao, B., Yang, Y., Lash, G.E. and Li, P. (2024). Cyclophosphamide induces ovarian granulosa cell ferroptosis via a mechanism associated with HO-1 and ROS-mediated mitochondrial dysfunction. *Journal of Ovarian Research*, 17(1), 107.

De Leo, V., Lanzetta, D., D'Antona, D., La Marca, A., & Morgante, G. (1998). Hormonal effects of flutamide in young women with polycystic ovary syndrome. *The Journal of Clinical Endocrinology & Metabolism*, 83(1), 99-102.

Del Río, J. A., Gómez, P., Baídez, A. G., Arcas, M. C., Botía, J. M., & Ortúño, A. (2004). Changes in the levels of polymethoxyflavones and flavanones as part of the defense mechanism of *Citrus sinensis* (cv. Valencia Late) fruits against *Phytophthora citrophthora*. *Journal of agricultural and food chemistry*, 52(7), 1913-1917.

Escobar-Morreale, H. F. (2018). Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. *Nature Reviews Endocrinology*, 14(5), 270-284.

Estruel-Amades, S., Massot-Cladera, M., Pérez-Cano, F. J., Franch, Á., Castell, M., & Camps-Bosacoma, M. (2019). Hesperidin Effects on Gut Microbiota and Gut-Associated Lymphoid Tissue in Healthy Rats. *Nutrients*, 11(2), 324.

Faith, J. J., Guruge, J. L., Charbonneau, M., Subramanian, S., Seedorf, H., Goodman, A. L., Clemente, J. C., Knight, R., Heath, A. C., Leibl, R. L., Rosenbaum, M., & Gordon, J. I. (2013). The long-term stability of the human gut microbiota. *Science (New York, N.Y.)*, 341(6141), 1237439.

Franks, S., & Hardy, K. (2010). Aberrant follicle development and anovulation in polycystic ovary syndrome. *Annales d'endocrinologie*, 71(3), 228-230.

Ghosh, S. S., Wang, J., Yannie, P. J., & Ghosh, S. (2020). Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. *Journal of the Endocrine Society*, 4(2), bvz039.

Gronich, N., Lavi, I., & Rennert, G. (2011). Higher risk of venous thrombosis associated with drospirenone-containing oral contraceptives: a population-based cohort study. *Cmaj*, 183(18), E1319-E1325.

Guilherme, A., Virbasius, J. V., Puri, V., & Czech, M. P. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. *Nature reviews Molecular cell biology*, 9(5), 367-377.

Hajam, Y. A., Rather, H. A., Kumar, R., Basheer, M., & Reshi, M. S. (2024). A review on critical appraisal and pathogenesis of polycystic ovarian syndrome. *Endocrine and Metabolic Science*, 14, 100162.

Hanchang, W., Khamchan, A., Wongmanee, N., & Seedadee, C. (2019). Hesperidin ameliorates pancreatic β -cell dysfunction and apoptosis in streptozotocin-induced diabetic rat model. *Life sciences*, 235, 116858.

Hanna, A., Abbas, H., Yassine, F., AlBush, A., & Bilen, M. (2025). Systematic review of gut microbiota composition, metabolic alterations, and the effects of treatments on PCOS and gut microbiota across human and animal studies. *Frontiers in microbiology*, 16, 1549499.

Heidari, Z., Farahmandpour, F., Bazyar, H., & Pashayee-Khamene, F. (2025). Effects of Hesperidin Supplementation on Cardiometabolic Markers: A Systematic Review and Meta-analysis of Randomized Controlled Trials. *Nutrition reviews*, 83(3), e1014-e1033.

Homburg, R. (2004). Management of infertility and prevention of ovarian hyperstimulation in women with polycystic ovary syndrome. *Best Practice & Research Clinical Obstetrics & Gynaecology*, 18(5), 773-788.

Houston, E. J., & Templeman, N. M. (2025). Reappraising the relationship between hyperinsulinemia and insulin resistance in PCOS. *Journal of Endocrinology*, 265(2).

Ji, Z., Deng, W., Chen, D., Liu, Z., Shen, Y., Dai, J., Zhou, H., Zhang, M., Xu, H. and Dai, B. (2024). Recent understanding of the mechanisms of the biological activities of hesperidin and hesperetin and their therapeutic effects on diseases. *Heliyon*, 10(5).

Legro, R. S., Arslanian, S. A., Ehrmann, D. A., Hoeger, K. M., Murad, M. H., Pasquali, R., & Welt, C. K. (2013). Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. *The Journal of Clinical Endocrinology & Metabolism*, 98(12), 4565-4593.

Legro, R. S., Arslanian, S. A., Ehrmann, D. A., Hoeger, K. M., Murad, M. H., Pasquali, R., & Welt, C. K. (2013). Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. *The Journal of Clinical Endocrinology & Metabolism*, 98(12), 4565-4592.

Li, C., & Schluessener, H. (2017). Health-promoting effects of the citrus flavanone hesperidin. *Critical reviews in food science and nutrition*, 57(3), 613-631.

Li, Y. M., Li, X. M., Li, G. M., Du, W. C., Zhang, J., Li, W. X., Xu, J., Hu, M., & Zhu, Z. (2008). In vivo pharmacokinetics of hesperidin are affected by treatment with glucosidase-like BglA protein isolated from yeasts. *Journal of agricultural and food chemistry*, 56(14), 5550-5557.

Liu, H., Jin, L., Wang, X., Shi, J., He, Y., Sun, N., & Yang, F. (2025). Reactive oxygen species in polycystic ovary syndrome: Mechanistic insights into pathogenesis and therapeutic opportunities. *Redox Biology*, 103776.

Liu, T., Lei, C., Huang, Q., Song, W., Li, C., Sun, N., & Liu, Z. (2024). Hesperidin and fecal microbiota transplantation modulate the composition of the gut microbiota and reduce obesity in high fat diet mice. *Diabetes, Metabolic Syndrome and Obesity*, 3643-3656.

Lu, K., Shan, S., Zeng, Y., & Yang, G. (2025). Neohesperidin mitigates high-fat-diet-induced colitis in vivo by modulating gut microbiota and enhancing scfas synthesis. *International Journal of Molecular Sciences*, 26(2), 534.

Malik, S., Saeed, S., Saleem, A., Khan, M. I., Khan, A., & Akhtar, M. F. (2024). Alternative treatment of polycystic ovary syndrome: pre-clinical and clinical basis for using plant-based drugs. *Frontiers in Endocrinology*, 14, 1294406.

Mendoza, N., Simoncini, T., & Genazzani, A. D. (2014). Hormonal contraceptive choice for women with PCOS: a systematic review of randomized trials and observational studies. *Gynecological Endocrinology*, 30(12), 850-860.

Mogheri, P., Castello, R., Magnani, C. M., Tosi, F., Negri, C., Armanini, D., Bellotti, G., & Muggeo, M. (1994). Clinical and hormonal effects of the 5 alpha-reductase inhibitor finasteride in idiopathic hirsutism. *The Journal of Clinical Endocrinology & Metabolism*, 79(4), 1115-1121.

Morshedzadeh, N., Ramezani Ahmadi, A., Behrouz, V., & Mir, E. (2023). A narrative review on the role of hesperidin on metabolic parameters, liver enzymes, and inflammatory markers in nonalcoholic fatty liver disease. *Food science & nutrition*, 11(12), 7523-7533.

Mosqueda-Solís, A., Sánchez, J., Reynés, B., Palou, M., Portillo, M. P., Palou, A., & Picó, C. (2018). Hesperidin and capsaicin, but not the combination, prevent hepatic steatosis and other metabolic syndrome-related alterations in western diet-fed rats. *Scientific reports*, 8(1), 15100.

Ouyang, X., Zhou, Q., Tang, H., & Li, L. (2025). Pathogenesis and treatment of obesity-related polycystic ovary syndrome. *Journal of Ovarian Research*, 18(1), 258.

Pan, L., Ye, H., Pi, X., Liu, W., Wang, Z., Zhang, Y., & Zheng, J. (2023). Effects of several flavonoids on human gut microbiota and its metabolism by *in vitro* simulated fermentation. *Frontiers in microbiology*, 14, 1092729.

Peng, P., Jin, J., Zou, G., Sui, Y., Han, Y., Zhao, D., & Liu, L. (2021). Hesperidin prevents hyperglycemia in diabetic rats by activating the insulin receptor pathway. *Experimental and Therapeutic Medicine*, 21(1), 53.

Ran, X., Hu, G., Guo, W., Li, K., Wang, X., Liu, J., & Fu, S. (2024). Hesperetin regulates the intestinal flora and inhibits the TLR4/NF- κ B signaling axis to protect the blood-milk barrier and prevent mastitis. *Life sciences*, 342, 122533.

Rehman, K., Munawar, S. M., Akash, M. S. H., Buabeid, M. A., Chohan, T. A., Tariq, M., Jabeen, K., & Arafa, E. A. (2020). Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and *in silico* validation. *PLoS one*, 15(1), e0227637.

Rudic, J., Jakovljevic, V., Jovic, N., Nikolic, M., Sretenovic, J., Mitrovic, S., Bolevich, S., Bolevich, S., Mitrovic, M., Raicevic, S. and Andric, K., (2022). Antioxidative Effects of standardized Aronia melanocarpa extract on Reproductive and metabolic disturbances in a rat model of polycystic ovary syndrome. *Antioxidants*, 11(6), 1099.

Sabbadin, C., Andrisani, A., Zermiani, M., Donà, G., Bordin, L., Ragazzi, E., Boscaro, M., Ambrosini, G., & Armanini, D. (2016). Spironolactone and intermenstrual bleeding in polycystic ovary syndrome with normal BMI. *Journal of endocrinological investigation*, 39(9), 1015–1021.

Shams-Rad, S., Mohammadi, M., Ramezani-Jolfaie, N., Zarei, S., Mohsenpour, M., & Salehi-Abargouei, A. (2020). Hesperidin supplementation has no effect on blood glucose control: A systematic review and meta-analysis of randomized controlled clinical trials. *British journal of clinical pharmacology*, 86(1), 13-22.

Shoorei, H., Banimohammad, M., Kebria, M. M., Afshar, M., Taheri, M. M., Shokohi, M., ... & Pazoki-Toroudi, H. (2019). Hesperidin improves the follicular development in 3D culture of isolated preantral ovarian follicles of mice. *Experimental Biology and Medicine*, 244(5), 352-361.

Singh, S., Pal, N., Shubham, S., Sarma, D. K., Verma, V., Marotta, F., & Kumar, M. (2023). Polycystic ovary syndrome: etiology, current management, and future therapeutics. *Journal of clinical medicine*, 12(4), 1454.).

Sivaslioglu, A., & Goktas, Z. (2024). A comprehensive review on the impact of hesperidin and its aglycone hesperetin on metabolic dysfunction-associated steatotic liver disease and other liver disorders. *Nutrition research reviews*, 1-37.

Subramanian, P., Anandan, R., Jayapalan, J. J., & Hashim, O. H. (2015). Hesperidin protects gentamicin-induced nephrotoxicity via Nrf2/HO-1 signaling and inhibits inflammation mediated by NF- κ B in rats. *Journal of functional foods*, 13, 89-99.

Talebi, S. F., Kooshki, A., Zarein, M., Seify, M., Dolatshahi, B., Shoorei, H., & Bhandari, R. K. (2024). Protective effect of hesperidin on malathion-induced ovarian toxicity in mice: The role of miRNAs, inflammation, and apoptosis. *Toxicology Reports*, 12, 469-476.

Teede, H. J., Misso, M. L., Costello, M. F., Dokras, A., Laven, J., Moran, L., Piltonen, T., Norman, R. J., & International PCOS Network (2018). Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. *Fertility and sterility*, 110(3), 364–379.

Tian, M., Han, Y. B., Zhao, C. C., Liu, L., & Zhang, F. L. (2021). Hesperidin alleviates insulin resistance by improving HG-induced oxidative stress and mitochondrial dysfunction by restoring miR-149. *Diabetology & Metabolic Syndrome*, 13(1), 50.

Tirkey, N., Pilkhwal, S., Kuhad, A., & Chopra, K. (2005). Hesperidin, a citrus bioflavonoid, decreases the oxidative stress produced by carbon tetrachloride in rat liver and kidney. *BMC pharmacology*, 5(1), 2.

Tremblay, R. R. (1986). 10 Treatment of hirsutism with spironolactone. *Clinics in Endocrinology and Metabolism*, 15(2), 363-371.

Wang, J., Yao, Y., Yao, T., Shi, Q., Zeng, Y., & Li, L. (2024). Hesperetin Alleviated Experimental Colitis via Regulating Ferroptosis and Gut Microbiota. *Nutrients*, 16(14), 2343.

Wang, T., Xu, P., Yuan, J., Chen, H., Guo, X., Gao, J., Wang, Y., Yao, D., Li, X., Liu, B. and Liu, Y. (2025). Mitochondrial dysfunction in oocytes: implications for fertility and ageing. *Journal of Ovarian Research*, 18(1), 186.

Wang, X., Hasegawa, J., Kitamura, Y., Wang, Z., Matsuda, A., Shinoda, W., Miura, N., & Kimura, K. (2011). Effects of hesperidin on the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats. *Journal of pharmacological sciences*, 117(3), 129–138.

Welbat, J. U., Naewla, S., Pannangrong, W., Sirchoat, A., Aranarochana, A., & Wigmore, P. (2020). Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat. *Biochemical Pharmacology*, 178, 114083.

Wild, R. A., Rizzo, M., Clifton, S., & Carmina, E. (2011). Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. *Fertility and sterility*, 95(3), 1073-1079.

Witchel, S. F., Oberfield, S. E., & Peña, A. S. (2019). Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. *Journal of the Endocrine Society*, 3(8), 1545-1573.

Wu, J., Shen, S., Cheng, H., Pan, H., Ye, X., Chen, S., & Chen, J. (2025). RG-I pectic polysaccharides and hesperidin synergistically modulate gut microbiota: An *in vitro* study targeting the proportional relationship. *Food chemistry*, 462, 141010.

Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., Hu, J., Sun, J., Yao, R., & Huang, Q. (2019). Hesperidin: A therapeutic agent for obesity. *Drug design, development and therapy*, 3855-3866.

Yang, H., Lee, S.Y., Lee, S.R., Pyun, B.J., Kim, H.J., Lee, Y.H., Kwon, S.W., Suh, D.H., Lee, C.H., Hong, E.J. and Lee, H.W. (2018). Therapeutic effect of *Ecklonia cava* extract in letrozole-induced polycystic ovary syndrome rats. *Frontiers in pharmacology*, 9, 1325.

Yang, Q., Qian, L., He, S., & Zhang, C. (2024). Hesperidin alleviates zinc-induced nephrotoxicity via the gut-kidney axis in swine. *Frontiers in cellular and infection microbiology*, 14, 1390104.

Yao, H., Yu, J., Yang, X., & Xu, J. (2025). Mechanisms of disruption of the gut-brain axis by environmental endocrine disruptors. *Ecotoxicology and Environmental Safety*, 304, 119124.

Zarein, M., Zarban, A., Shoorei, H., Gharekhani, M., & Hassanzadeh-Taheri, M. (2023). The amelioration of ovarian dysfunction by hesperidin in malathion-treated mice through the overexpression of PCNA and FSHR proteins. *Heliyon*, 9(12).

Zhang, Q., Yang, Z., Ou, X., Zhang, M., Ji, R., & Wu, G. (2025). Hesperidin Inhibits Oxidative Stress and Apoptosis of Granulosa Cells in Polycystic Ovarian Syndrome Through the JAK2/STAT3 and PI3K/AKT Pathways. *Phytotherapy Research*, 39(11), 5174-5197.

Zhang, X., Yang, Y., Wen, M., Zhong, F., Shu, X., Xu, R., Xiong, P., Zhou, Z., He, X., Tang, X., Wang, B., Zhou, L., & Shen, T. (2025). Supplementary Hesperidin Alleviated CPT-11-Induced Diarrhea by Modulating Gut Microbiota and Inhibiting the IL-17 Signaling Pathway. *Journal of agricultural and food chemistry*, 73(10), 5915-5930.

Zhou, Z., Kandhare, A. D., Kandhare, A. A., & Bodhankar, S. L. (2019). Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalph/NF-kappaB pathways. *EXCLI journal*, 18, 723.

7. About the author(s)

Sananda Sil, Senior Research Fellow, Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, India. silsananda1@gmail.com

Prof. Sandip Chattopadhyay, Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, India. sandipdoc@mail.vidyasagar.ac.in; sandipdoc@yahoo.com