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Nitric oxide is a crucial gasotransmitter with a diverse range of physiological functions, notably including its significant antimicrobial properties.
This review succinctly summarizes its antibacterial mechanisms and current advancements in NO delivery systems pertinent to infection-
associated biomedical applications. Furthermore, it explores the challenges associated with NO delivery, emphasizing how computational and
machine learning-based approaches can aid in overcoming these limitations by optimizing design and predicting efficacy.
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1. Introduction

The escalating challenge of antimicrobial resistance (AMR)
represents a profound global public health crisis, projected to
cause over 10 million deaths annually by 2050, surpassing
mortality rates from diseases like malaria, HIV, and
tuberculosis combined.” Multidrug-resistant (MDR) bacteria
like carbapenem-resistant Pseudomonas aeruginosa,
methicillin-resistant Staphylococcus aureus and vancomycin-
resistant Enterococcus are the major contributors to fatal
healthcare-associated infections worldwide.” A significant
compounding factor is the formation of bacterial biofilms,
particularly - on biomedical devices, which drastically
increases resistance to conventional antibiotics and
necessitates up to 1000 times higher dosages for treatment.?
At present, the development of innovative antibacterial
strategies that can circumvent traditional resistance
mechanisms is a pressing demand.

Nitric oxide (NO) was recognized as the "Molecule of the
Year" by Science in 1992 for its diverse physiological
functions as a gasotransmitter, including vasodilation,
neurotransmission, and immune regulation.* Besides these
roles, NO possesses potent, broad-spectrum antimicrobial
activity against a wide range of pathogens comprising MDR
bacteria, fungi, and viruses.>” Its antibacterial efficacy stems

from inducing severe oxidative and nitrosative stress within
bacterial cells, culminating in critical cellular damage such as
DNA lesions, protein modifications, and lipid peroxidation-
mediated membrane disruption.” The multifaceted modes of
action make bacterial resistance development unlikely,
providing NO with the critical advantage of circumventing
typical drug resistance mechanisms, a persistent problem
with other antibacterial agents.™ Crucially, NO also inhibits
bacterial biofilm formation and disperses established biofilms
by modulating cyclic di-GMP signaling in bacteria, enhancing
bacterial susceptibility to host immune responses and other
antibacterials."™* These unique properties position
exogenous NO as a promising therapeutic candidate against
MDR infections in the ongoing efforts to tackle antimicrobial
resistance (AMR).

Despite its immense therapeutic potential, NO's inherent high
reactivity, gaseous nature, and extremely short biological
half-life  have historically limited its direct clinical
application.”*® Significant advancements, however, have led
to the development of sophisticated NO delivery systems
designed to enable controlled, sustained, and targeted
release of the molecule at infection sites.’>*? These
systems are engineered to respond to specific triggers such
as light, pH changes, or enzymatic activity present at
infection sites.” "
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This mini review discusses the antibacterial properties of NO,
the latest developments in various NO-releasing platforms
and their diverse biomedical applications in persistent
infections, medical device coatings, and wound healing.
Current challenges and prospects are addressed,
emphasizing the potential role of computational and artificial
intelligence (Al)-based machine learning (ML) approaches in
overcoming the limitations.**** ML-based approaches can
aid in designing platforms with optimized NO release,
stability, precise targeted delivery, and predict integration into
combination therapies for clinical translation.***?

2. NO Biosynthesis and Its Role as an
Antibacterial Agent

This section discusses the pathways of endogenous NO
production in humans and bacteria and elaborates on the
molecular mechanisms  behind its  broad-spectrum
antibacterial activity.

2.1. Pathways for NO Biosynthesis

NO is endogenously produced in the human body for
regulating vital physiological processes such as
cardiovascular control, neurotransmission, host immune
response, and the maintenance of cellular homeostasis.®
Intriguingly, some bacteria also reportedly produce NO for
modulating their metabolic processes.”® Further, we discuss
the major pathways of endogenous NO production in
mammals and bacteria.

2.1.1. Endogenous NO production in Humans

The primary source of endogenous NO in humans is
enzymatic, involving the conversion of L-arginine by the Nitric
Oxide Synthase (NOS) family of enzymes (Figure 1A).°
These are homodimeric oxidoreductase enzymes that cleave
L-arginine, producing NO and L-citrulline, and require
cofactors such as NADPH and oxygen. The availability of
intracellular L-arginine is a rate-limiting step in NOS-
dependent NO release.® Three main isoforms of NOS
regulate human NO production. Constitutive NOS (cNOS)
includes neuronal NOS (nNOS or NOS1), involved in
neurotransmission, and endothelial NOS (eNOS or NOS3),
which is crucial for regulating physiological processes like
vasodilation and angiogenesis. These isoforms typically
produce NO at low, basal concentrations.” Primarily,
Inducible NOS (iNOS or NOS2) is expressed in immune
cells, including macrophages and neutrophils, and in a
subset of non-immune cells. This expression is typically
induced in response to inflammatory stimuli, including
bacterial lipopolysaccharides and certain cytokines. iINOS
produces significantly higher concentrations of NO over a
longer duration compared to constitutive NOS, playing a vital
role in host defense against pathogens and in inflammatory
responses.™

2.1.2. Bacterial NO generation

Interestingly, bacteria themselves can also produce NO
through various mechanisms. Some bacteria possess their
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own nitric oxide synthases (bNOSs) that can generate NO
from L-arginine.”® However, these bNOSs typically lack an
essential reductase domain, meaning that for NO generation,
they often require the assistance of eukaryotic reductases in
vivo.?* Additionally, bacteria can produce NO through NOS-
independent pathways. A notable example is during
denitrification, an anaerobic respiration process in bacteria,
where nitrate undergoes stepwise reduction, producing NO
as an intermediate product.* Bacteria such as Pseudomonas
aeruginosa and P. stutzeri are notable opportunistic
pathogens that survive through denitrification in hypoxic
environments, effectively decomposing NO as part of this
process, aiding their survival.** Nitrite reduction to NO by
nitrite reductases (NIR) is another pathway, particularly
observed in denitrifying bacteria such as Pseudomonas
thiobacillus ~ (Figure 1A).® Species like Legionella
pneumophila, Nitrosomonas europaea, and Neisseria
gonorrhoeae are also noted in contexts related to NO-based
dispersal in biofilms, suggesting their production of and
interaction with NO.*®

2.2. NO as an Antibacterial Agent

The endogenous production of NO, often compromised in
chronic infections, can be mimicked. Exogenous production
of NO can be achieved via various NO donors directly or by
incorporating them into smart nanomaterials or polymeric
delivery systems for controlled and sustained antibacterial
activity.”> NO and its derivatives exert potent antibacterial
effects, and their efficacy is often dependent on the NO
concentration, with low levels (<1 pM) involved in signal
transduction and high levels (>1 pM) associated with
cytotoxicity. Typically, low concentrations (pM—uM) can affect
the formation or dispersal of biofilms, while concentrations
higher than 1 pM are bactericidal.®® Exogenous NO
demonstrates broad-spectrum activity against various
pathogens, including Gram-negative bacteria such as P.
aeruginosa, E. coli, Klebsiella pneumoniae, Burkholderia
cepacia, Serratia marcescens, Vibrio cholerae,
Fusobacterium nucleatum, and Burkholderia multivorans. It is
also effective against Gram-positive bacteria like
Staphylococcus aureus, methicillin-resistant Staphylococcus
aureus (MRSA), Staphylococcus epidermidis, Listeria
monocytogenes, Bacillus licheniformis, Bacillus subtilis, and
Group B Streptococcus, and even Mycobacterium abscessus
and Streptococcus pneumoniae.>***** The activity can be
dose-dependent and varies with bacterial species, with
Gram-negative bacteria often being more susceptible due to
their thinner peptidoglycan layer compared to Gram-positive
bacteria's thicker peptidoglycan layer.® Studies with S.
pneumoniae showed varying effects of NO depending on the
infection model. Also, mucoid and non-mucoid strains of P.
aeruginosa showed different susceptibilities to NO-releasing
chitosan under varying aerobic and anaerobic conditions.*
This underscores the complexity of NO's interaction with
different bacterial species and their environments and needs
to be explored in detail.
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2.2.1. Mechanisms of Action and Propensity for
Resistance Development

NO exerts its antibacterial effects primarily through its
capacity to generate reactive nitrogen and oxygen species
(RNS and ROS), which consequently induce cellular stress
and damage to vital bacterial components. (Figure 1B).
Alternatively, NO also exerts indirect effects on microbes via
host immune response modulation.”® At bactericidal
concentrations, NO reacts with oxygen or reactive oxygen
intermediates like superoxide (O;"), forming highly oxidizing
species such as peroxynitrite (ONOO~") and dinitrogen
trioxide (N.Os).>*” These reactive products lead to oxidative
and nitrosative stress, causing significant damage to bacterial
membrane, DNA, lipids and proteins.”® NO and its congeners,
particularly N,Os;, can deaminate DNA bases and cause
oxidative damage to DNA, leading to abasic sites and strand
breaks.” Studies with S. typhimurium have shown
mutagenicity consistent with a DNA deaminating mechanism
upon exposure to NO donor compounds.® Importantly, NO
has also been found to inhibit DNA alkyl transferases
involved in DNA repair by reacting with their sulfhydryl
groups, thereby exacerbating DNA damage.' Peroxynitrite,
in particular, can initiate lipid peroxidation in bacterial
membranes, leading to membrane destruction and
compromised cell integrity.”” Elevated levels of NO and O3
within lipid membranes enhance the generation of nitrosative
and oxidative species like N,O3; and NO,, contributing to the
membrane destruction and compromised cell integrity.*® NO
interacts with proteins through heme groups, iron-sulfur
clusters, reactive thiols, and aromatic amino acid residues.®
Nitrosative species like S-nitrosothiols and N,O; nitrosate
thiols on both cell surface and intracellular proteins, altering
vital protein functions, leading to their inactivation.”® The
modification of surface thiols is reported to be responsible for
S-nitrosothiol-mediated Bacillus cereus spore outgrowth
inhibition.> It has been reported that peroxynitrite and NO,
can also nonspecifically cause oxidation of proteins at
various cellular sites. This includes the inhibition of key
metalloproteins in bacterial respiratory reactions and the
destruction of adhesion proteins, particularly in prokaryotic
cells that are highly sensitive to NO due to their reliance on
iron-sulfur clusters.” NO and RNS degrade these clusters,
releasing iron. This free iron then catalyzes the formation of
more free radicals, which in turn damage DNA and cell
membranes.™

A significant advantage provided by NO’s multiple and
diverse antimicrobial pathways is its ability to bypass typical
antibiotic resistance mechanisms. They make it unlikely for
bacteria to develop resistance, as observed in studies where
no significant increase in the minimum inhibitory
concentration was found for S. aureus, MRSA, S.
epidermidis, E. coli, and P. aeruginosa.'® However, studies
have shown that bacteria have developed certain
mechanisms to resist NO toxicity. P. aeruginosa and
Salmonella enterica detoxify NO by employing enzymes like
nitric oxide reductase (NOR) and flavohemoglobin, which
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convert NO into less harmful compounds such as nitrous
oxide or nitrate. **“° Enterohemorrhagic E. coli also relies on
NOR for survival within macrophages.* Additionally, Gram-
positive bacteria such as Staphylococcus aureus can
produce their own NO via bNOS, which aids in resisting
immune responses and enhances antibiotic tolerance.*
This endogenous NO production in species like S. aureus
can significantly increase their ability to survive antibiotic
treatments.®® These diverse strategies underscore the
complex interplay between bacterial defense and NO-based
antibacterials, highlighting the need for developing innovative
NO donor systems capable of circumventing these
sophisticated defense mechanisms.
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Figure 1. A. Schematic of endogenous nitric oxide (NO) production in
mammalian and bacterial systems; B. Proposed antibacterial
mechanisms of NO against planktonic bacteria and biofilms. Adapted
with permission under Creative Commons Attribution License (CC-BY)
from ref.® Copyright 2022, The Authors. Published by MDPI, Basel,
Switzerland.

2.2.2. Biofilm Inhibition and Dispersion

NO plays a crucial role in regulating bacterial biofilms by
acting as an important inhibitor and dispersant.**** The
biofilm life cycle, including attachment, colonization,
maturation, and dispersal, is governed by the intracellular
levels of second messenger cyclic-diguanylate-guanosine
monophosphate (c-di-GMP).**** Elevated intracellular levels
of c-di-GMP promote biofilm formation, whereas lower
concentrations induce bacteria to adopt a free-living
planktonic mode of existence.®® NO mediates biofim
dispersal by reducing intracellular c-di-GMP concentrations,
thereby triggering the synthesis and release of hydrolytic
enzymes that degrade the biofim matrix."**®* The impact of
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NO on biofilm inhibition and dispersal has been observed
across a range of various Gram-negative bacteria, such as S.
marcescens, V. cholerae, E. coli, F. nucleatum, P.
aeruginosa and L. monocytogenes. Biofilms of Gram-positive
bacteria like B. licheniformis and S. epidermidis, as well as
clinical and MDR isolates and even mixed species biofilms
from water distribution and treatment systems have been
reported to be inhibited by NO.*#%%% |ow levels of
exogenous NO, such as 0.025-0.50 x 10° M, have been
demonstrated to disperse mature P. aeruginosa biofilms over
a period of 24 hours, initiating bacterial detachment while
preserving the viability of planktonic bacteria. This dispersal
makes bacteria more susceptible to antimicrobial treatments,
as demonstrated by the increased efficacy of chlorine
disinfection against multi-species biofilms pretreated with
NO.* Additionally, sustained release of NO via nanoparticles
has shown considerable promise in the prevention and
disruption of S. aureus adhesion and biofilm formation
inhibition in a preclinical rat model of central venous
catheter.® NO can also modulate bacterial communication
pathways such as quorum sensing, thereby contributing to its
anti-biofilm properties.*

3. Advancements in NO Delivery Systems for
Antibacterial Applications

The inherent reactivity and short half-life of NO necessitate
advanced delivery strategies to harness its therapeutic
potential effectively.”'® There is a persistent requirement for
systems capable of spatiotemporally regulating NO
concentrations in intended applications, particularly for
exploring its utility in translational clinical research. These
systems aim to provide controlled, sustained, and targeted
release of NO to overcome its gaseous nature and high
reactivity in biological environments.*®?>-%

3.1. NO Donors

NO donors can generate and release exogenous NO, and
their design focuses on tuning the release rate and kinetics to
match desired therapeutic applications.”** These donors are
crucial for leveraging NO's therapeutic potential, particularly
in antibacterial applications. NO donors can be broadly
classified based on their chemical nature and mechanisms of
NO release. The most studied and utilized types include N-
Diazeniumdiolates (NONOate), S-Nitrosothiols (RSNOs),
Furoxans, Metal Nitrosyl Complexes and Organic Nitrates
(Figure 2).*

3.1.1. N-Diazeniumdiolates (NONOates)

NONOates are a well-studied class of NO donors recognized
for their capacity to spontaneously release NO.' Under
physiological conditions, a single NONOate molecule can
spontaneously release two molecules of NO. This
spontaneous release makes them valuable for mimicking
transient, low-level NO release. In antibacterial therapy,
NONOates have shown efficacy against various pathogens.
Diethylenetriamine (DETA) NONOate and spermine
NONOate have demonstrated time- and concentration-
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dependent antibacterial activity against B. pseudomallei.®®®’

DETA NONOate has also been utlized against
uropathogenic E. coli.®®*%® To effectively control their
spontaneous NO release and achieve therapeutic
concentrations, NONOates are frequently incorporated into
various delivery systems, such as polyamidoamine (PAMAM)
conjugates, pluronic F68-branched polyethyleneimine-
NONOate (F68-BPEI-NONOate), B-cyclodextrin derivatives,
alginates, and polymeric nanoparticles.®*"® These systems
help in modulating the NO release kinetics to provide
sustained low concentrations for biofilm dispersal or higher
concentrations for bactericidal effects.*

3.1.2. S-Nitrosothiols (RSNOs)

S-Nitrosothiols (RSNOs) represent naturally occurring NO
reservoirs and carriers within biological systems, generally
exhibiting greater stability than NONOates. They release a
single molecule of NO under specific conditions, including
exposure to UV light, elevated temperatures, certain metal
ions, acids, or enzymatic activity.”® This conditional release
mechanism offers a way to control NO concentrations. The
conversion of RSNOs to NO is a primary mechanism for their
antimicrobial effects, particularly through inducing DNA
damage at cytotoxic NO concentrations.”® A novel bifocal
antimicrobial agent, SNAPicillin, was developed using SNAP
(S-nitroso-N-acetylpenicillamine), an RSNO donor, to initially
release NO gas to disperse biofilm matrices. This was
followed by the combined action of NO and ampicillin,
showing enhanced lethality against P. aeruginosa and MRSA
biofilms.”” Studies on RSNO donors like S-nitrosoglutathione
(GSNO), S-nitrosocysteine (CySNO), S-nitroso-N-
acetylcysteine (SNAC), and (2-(2-S-nitroso propionamide)
acetic acid (GAS) against E. coli and S. aureus have shown
potent antibacterial activity.>’®* RSNOs can also be
integrated into medical-grade polymeric devices for
prolonged and controlled NO release, enabling the
maintenance of effective antibacterial concentrations over
time.79,80

3.1.3. Furoxans (1,2,5-oxadiazole N-oxides)

This class of NO donors is characterized by its requirement
for a thiol attack to initiate the release of NO. This
mechanism allows for a degree of control over NO release,
potentially enabling the achievement of a specific
antibacterial concentration.”® Certain furoxan compounds
have demonstrated notable antibacterial capabilities.
Specifically, 3-{[2-(dimethylamino)ethyl]oxy}-4-phenylfuroxan
and 3-nitro-4-phenylfuroxan have proven effective in
eliminating P. aeruginosa biofilms as well as exhibiting strong
bactericidal activity against it.2"®

3.1.4. Metal Nitrosyl Complexes

These complexes contain at least one NO functional group
directly bonded to a central metal atom. NO release from
these complexes can be triggered by light or single-electron
reduction, providing another avenue for controlled delivery
and concentration.”®®' Sodium nitroprusside (SNP) is a
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prominent example within this category, shown to disperse P.
aeruginosa biofilms, with studies indicating that 250 pM SNP
after 24 hours can achieve 63.5% dispersal.*® However, a
significant limitation of SNPs is the cytotoxicity arising from
the dissociation of cyanide during its administration, which
necessitates careful monitoring and minimal dosing to avoid
harmful high concentrations.*

3.1.5. Organic Nitrates

Organic nitrates are nitrite esters featuring the nitroxide
functional group (-ONOy). Nitroglycerin (glyceryl nitrate, GTN)
is a historic example. While isosorbide mononitrate (ISMN)
has functioned as an effective NO donor in nanoparticle and
gel-based delivery systems against S. aureus, its clinical
safety in this application requires further research.®** The
challenge with organic nitrates is often in achieving
sustained, non-toxic NO concentrations.”>®

3.1.6. Other NO Donors

Beyond the primary classes of NO donors, various other
compounds and strategies are being explored for their NO-
generating capabilities in antibacterial therapy. These include
nitroaromatic compounds, such as specifically designed
nitrobenzene derivatives, which release NO via metabolic
processes and have shown promising antibacterial
effects.?*® Another class includes Inorganic nitrites, such
as NaNO,, which serve as specific NO donors, particularly in
hypoxic or acidic conditions, with nitrite being reduced to
NO.2%8 |n  addition, L-arginine-based approaches
leverage the natural precursor for NO production, with
exogenous L-arginine enhancing NO  synthesis.?”®
Innovative  approaches also include NO-donating
antimicrobial peptides, where peptides are functionalized
with NO-donor moieties or delivery systems for controlled
release that can be utilized to enhance bactericidal activity
and biofilm dispersion.?*° Photolabile NO donors such as N-
Nitrosamines are also an emerging notable class offering
precise spatial and temporal control over NO release upon
photoirradiation.®* Furthermore, electrochemical methods
offer a controlled way to generate and deliver NO, especially
for localized applications on medical devices. These methods
typically involve the electrochemical reduction of nitrite ions,
often catalyzed by metal complexes such as copper-ligand
complexes or iron sulfide nanoclusters, by applying a specific
voltage to release gaseous NO %%

While the primary focus of this review remains on discussing
the role of NO and its donors in antibacterial therapy, it is
important to mention that our laboratory has also contributed
to understanding NO's broader therapeutic potential through
innovative chemical scaffolds for NO release.'”*® This
includes studies on peptide-based self-assembling soft
structures for releasing intracellular NO and promoting
neurite outgrowth, as well as for NO-induced differentiation of
neuroblastoma cells.*’”*® Furthermore, we have also
investigated the anti-proliferative effects of purine-based
ligands with sustained nitric oxide release in the HepG2
cancer cell line.” These diverse NO-releasing scaffolds,
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although initially developed for neuroprotection or anti-cancer
applications, could potentially be modified through altered NO
release kinetics or surface functionalization to target bacterial
cells and biofilms for antibacterial therapies.

N-Diazeniumdiolates (NONOates) Furoxans (1,2,5-oxadiazole N-oxides)
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Figure 2. Major classes of NO donors used in antibacterial studies.'*
(DETA) NONOate: Diethylenetriamine N-diazeniumdioltes; GSNO: S-
nitrosoglutathione; SNAP: S-nitroso-N-acetylpenicillamine; CySNO: S-
nitrosocysteine; SNAC: S-nitroso-N-acetylcysteine; GTN: Glyceryl
Nitrate (Nitroglycerin); ISMN: Isosorbide mononitrate; SNP: Sodium
nitroprusside.

3.2. Stimuli-Responsive Release (pH, light, enzymes,
ROS)

To achieve precise control and localized delivery, NO donors
are often designed to be stimuli-responsive, releasing NO in
response to specific physiological or external triggers such as
pH, light, intracellular enzymes and ROS, temperature and
metal ions (Figure 3A).'®* Many infection sites, such as areas
of inflammation or bacterial growth, exhibit lower pH.*™ NO
donors have been engineered to release NO preferentially in
these acidic conditions, enabling targeted delivery.”'® A
study by Choi et al. reported a pH-jump reagent 2-
nitrobenzaldehyde (o-NBA), encapsulated within mesoporous
silica nanoparticles (MSNs) and further coated with
NONOates and calcium phosphate (pH@MSN-CaP-NO), for
targeted NO delivery. The composite led to corneal wound
healing, activated by light exposure at 365 nm. (Figure 3B).'%
Researchers have also developed small-molecule
photosensitized NO donors triggered by various wavelengths,
including visible light (e.g., 390 nm, 405 nm, 500 nm) and
near-infrared light (e.g., 800 nm, 980 nm), which can
penetrate deeper into tissues than UV light.2""%*%
Manganese-nitrosyl sol-gel coatings have been shown to
release NO upon visible and NIR light exposure, leading to
significant reduction of S. aureus, E. coli, and A. baumannii
bacterial loads.'” Some NO delivery systems leverage
specific enzymatic activity to trigger NO release,**#1%%110
Bacterial nitroreductase, an enzyme almost exclusively
present in bacteria, activated nitroaromatic-protected
diazeniumdiolate prodrugs, leading to site-specific NO
release and bacterial killing.® Systems designed to release
NO in the presence of elevated ROS, often found in
inflammatory and infectious environments, have allowed for
targeted NO generation.'* The catalytic release of NO from
S-nitrosothiols has also been observed with various metallic
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ions, notably Cu®, Au*, Pd*, P, V¥, In, Hf*, Fe®, Sn*,
and Zr**. Copper ions stand out as the most thoroughly
examined catalysts, driving the breakdown of RSNOs to
generate NO.*®7®? While substantial progress has been
made in leveraging various triggers, the future of these
intelligent systems in antibacterial applications is poised for
further refinement, with computational and artificial
intelligence-based machine learning approaches expected to
play a crucial role.

3.3. NO Delivery Systems for Controlled Release

Various materials serve as scaffolds or encapsulants for NO
donors, enabling controlled release kinetics and targeted
delivery to maximize NO's therapeutic efficacy upon
exposure to different stimuli. Major delivery systems that
have been utilized in biomedical applications pertinent to
infections include nanoparticle-based systems, polymeric
materials and hydrogels (Table 1).'%1826:64113

3.3.1. Nanoparticle-Based Systems

Nanopatrticles are widely investigated for NO delivery due to
their ability to encapsulate NO donors, protect them from
premature degradation, and facilitate targeted and localized
sustained release of NO under various stimuli and triggers in
multicomponent delivery systems. These can improve
bioavailability, reduce systemic toxicity to host tissues, and
enhance penetration into bacterial biofilms,%383102:105:114-119

3.3.1.1. Polymeric Nanoparticles

These biodegradable and biocompatible nanoparticles, often
made from polymers like polyglycolic acid (PGA), polylactic
acid (PLA), poly(lactic-co-glycolic acid) (PLGA) and chitosan,
can encapsulate NO donors for sustained release.’ 83619
128 Nanoparticles formulated with PLGA loaded with ISMN
have demonstrated potent antibacterial effects against S.
aureus biofilms.®*® Liu et al. reported co-assembled NO-
releasing nanoparticles combined with Pluronic F127
exhibiting potent antimicrobial efficacy against MRSA
strains.”'®  Furthermore, NO-releasing nanoparticles
incorporated into a chitosan hydrogel-glass composite have
been reported with augmented antimicrobial activity,
preventing biofilm formation on medical catheters.*® Nonoate-
loaded chitosan oligosaccharides (COS-EA/NO) have also
been reported to exhibit bactericidal activity against S. aureus
and P. aeruginosa strains.'®® Polyethylenimine (PEI)
NONOates doped PLGA nanoparticles have been designed
for extended NO release over 4 days to effectively bind to
and diffuse into MRSA biofilms.'”” Dendrimers, a class of
synthetic polymers, have been modified with NO donors to
effectively deliver NO in high concentrations and control its
release kinetics.””"**®* Some bifunctional dendrimers co-
deliver NO and ursodeoxycholic acid for anti-inflammatory
synergy."?® Another dual-action approach involved NONOate-
functionalized PAMAM dendrimer and low molecular weight
chitosan (CS) conjugates, enabling simultaneous, controlled
delivery of methicillin and NO (CS-PAMAM-MET/NONOate),
leading to significant bacterial killing and improved wound
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healing against Gram-positive, Gram-negative, and MRSA
130

infections.
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Figure 3. A. Various physiological and external stimuli utilized for NO
release; B. Schematic of pH@MSN-CaP-NO mediated smart NO
release. Reprinted with permission from ref.® Copyright 2016.
American Chemical Society.

3.3.1.2. Inorganic Nanoparticles

Mesoporous silica nanoparticles (MSNs) are frequently used
due to their large surface area and porous structure, allowing
efficient loading and release of NO donors in a controlled
manner.®**¥ stydies indicate that silica nanoparticles
releasing NO exhibit superior antibacterial efficacy against P.
aeruginosa in comparison to small-molecule NO donors,
while concurrently minimizing cytotoxicity towards healthy
cells.™ These nanoparticles have additionally shown
effective control and killing of P. aeruginosa, E. coli, S.
aureus, S. epidermidis, and C. albicans biofilms.?*%
Furthermore, metallic nanoparticles, such as gold and silver,
have distinct optical and electronic characteristics that aid in
NO delivery and can be combined with MSNs for
multifunctional applications.”® Gold Core@Shell MSNs
combined photothermal therapy with NO release have been
reported to significantly reduce S. aureus biofilm integrity in
literature. ™%

3.3.1.3. Lipid-Based Systems

Liposomes, with their lipid bilayer structure, can encapsulate
NO donors, prevent rapid decomposition and allowing for
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prolonged NO release. They offer good biocompatibility and
can be modified for targeted delivery.®® Cholesterol moieties
can enhance donor affinity and facilitate liposome transport.
Liposomal encapsulation of NO precursors like ISMN has
been shown to substantially increase their anti-biofilm effects
against S. aureus, positioning them as a potential agent for
topical clinical administration.*** Solid lipid nanoparticles also
serve as a more robust and regulated release platform for
NO compared to conventional liposomes.®**

3.3.2. Polymeric Materials and Coatings

Integrating NO donors directly into polymeric materials or
developing NO-releasing coatings for surfaces is a key
strategy for preventing infections, particularly on medical
devices.?***¥  NO-releasing polymeric coatings are
applied to catheters, stents, and other implants to prevent
adhesion and consequent bacterial biofilm formation.?***>*%
These materials can continuously release NO at the surface,
creating an antimicrobial environment. SNAP has been
extensively incorporated into biomedical-grade polymers,
showing potential for long-term applications.”**'*° Elast-Eon
E2A polymer catheters doped with SNAP showed a
significant reduction in thrombosis and bacterial adhesion
during implantation for 7 days in sheep veins.***** Silicone
Foley urinary catheters infused with NO-releasing materials
have been developed for the prevention of catheter-
associated urinary tract infections (CUTIs).”™** CarboSil
2080A, releasing NO with an SP60D60 top-coated polymer,
reduced S. aureus cell count by 96% compared to
control.***** Advanced NO-releasing catheter models using
diblock copolymer brushes made with uniform high-density
precision have been reported to reduce >99.99% biofilm of
various Gram-positive and Gram-negative bacteria, even
outperforming commercial silver catheters.™*® Polymeric films
and electrospun fibers incorporated with NO donors have
served as active wound dressings and in other surface
applications.'®*13*17 151 Electrospun polyurethane fibers
doped with silica particles releasing NO have demonstrated
sustained NO release for up to two weeks, allowing release
for a longer duration compared to fibers doped directly with
NO donors.™

3.3.3. Hydrogels and Topical Formulations

Hydrogels, as biocompatible, soft, and water-swollen polymer
networks, are excellent candidates for localized and topical
NO delivery.**%**>* Hydrogels can encapsulate NO donors
and release NO in a controlled manner, making them suitable
for treating skin infections, chronic wounds, and other
localized conditions where direct application is feasible.'****
Their tunable structures allow for flexible control over NO
release, as has been reported by altering the weight content
of polyethylene glycol (PEG).?® NO-releasing ointments have
been shown to improve healing activity in skin-wounded
animal models, promoting re-epithelialization, granulation
formation, collagen deposition, and angiogenesis in the early
phases of wound healing.®***® An L-Arg- and H,O,-
encapsulated hydrogel has been reported to continuously
generate NO, mediating chemotaxis of macrophages and
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fibroblasts to the site of wound and promoting synthesis of
collagen, thereby accelerating wound closure and dermal
regeneration.” Studies have also shown that NO released
from NO-containing graphene oxide nanocarriers embedded
in hydrogels can accelerate the scarless repair of burned skin
by inhibiting microorganisms and promoting pro-
vascularization activities."*®**®* NO-loaded metal-organic
frameworks have also demonstrated potential for skin repair,
increasing wound closure in vitro.*?****% Cream formulations
containing GSNO have also demonstrated significant killing
against S. epidermidis, S. aureus, and P. aeruginosa.*>®

3.4. Gaseous NO Delivery

While most current research focuses on donor-based
systems, direct administration of gaseous NO has specific
clinical applications, primarily for pulmonary conditions
2095161162 Inhaled NO is an FDA-approved treatment for
pulmonary hypertension.”® It has also shown promise in
limited clinical studies for its antimicrobial activity against
non-tuberculous mycobacterial lung disease.'® Studies have
demonstrated that exogenous gaseous NO has a significant
effect on the P. aeruginosa viability in rat lungs and
eradicates MDR S. aureus and E. coli strains in vitro with
intermittent exposure over 4 hours (160-200 ppm for 30
min).** Clinical findings indicate that high-dose inhaled nitric
oxide is a promising therapeutic option, particularly in cases
involving highly resistant bacterial strains.® However, direct
delivery of gaseous NO to deep-seated or localized infection
sites is therapeutically challenging due to its short half-life
and potential toxicity at high concentrations if uncontrolled.*®
Thus, it is imperative to explore novel strategies for inhaled
NO therapy to improve patient outcomes.

Table 1. Recent advanced NO delivery platforms for
infection-associated biomedical applications
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Abbreviations: PLGA: Poly(lactic-co-glycolic acid), PEI:
Polyethyleneimine;  T°A%  Two tailed  antimicrobial
amphiphiles, PVP: Polyvinylpyrrolidone, EC: Ethyl Cellulose,
MET: Methicillin, MSN: Mesoporous Silica Nanoparticles,
CaP: Calcium phosphate, PET: Poly(ethylene terephthalate),
SE: Silicone elastomer, SNAP: S-Nitroso-N-
acetylpenicillamine, CuS: Copper Sulfide, FUNPs: Furoxan-
based nanoparticles, PCL: Polycaprolactone, FOTyr-AMP:
Antimicrobial peptide conjugated 4-(4-(I-alanine methyl ester-
3-yl)-phenoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide
(FOTyr), PDA: Poly(dopamine), SNP: Sodium Nitroprusside,
PAMAM: Polyamidoamine, MoS,: Molybdenum sulfide, PCN:
Polymeric Carbon Nitride, CAT: adhesive hydrogels prepared
using adenine- and thymine-modified chitosan (CSA and
CST), GSNO: S-nitrosoglutathione, CuBDC: Copper metal
organic framework, PEG: Polyethylene glycol, BH + POM@L-
Arg: Bilayer hydrogel containing Polyvinyl alcohol (PVA),
hydroxypropyl methyl cellulose and chitosan loaded with L-
Arginine modified polyoxometalate nanoclusters, CMCS:
Carboxymethyl chitosan, HA: Hyaluronic acid, GOA@HG:
Glucose oxidase (GO) and L Arginine (A) incorporated into
HA aldehyde methacryloyl (H) and gelatin methacryloyl (G)
cryogels.

3.5. Synergistic Therapies
3.5.1. Antibiotic Potentiation

NO can act synergistically with other therapeutic modalities,
significantly enhancing their antibacterial efficacy and
potentially reducing the dosage of conventional treatments
required.”***® NO can increase bacterial susceptibility to
antibiotics by disrupting protective biofilm structures,
interfering with bacterial stress responses, and enhancing
antibiotic penetration into bacterial cells (Figure 4A).'*
Studies have confirmed that combinations of NO with various
antibiotics, like tobramycin, ciprofloxacin and colistin, are
often synergistic or additive, with no antagonism observed
against multiple MDR bacteria.> NO, combined with
tobramycin and colistin enhanced the susceptibility of S.
aureus and P. aeruginosa, while  NO-donating
fluoroquinolone/oxime hybrids were found to be more potent
than their parent compounds.” The combined use of
nitroxide carboxy-TEMPO (4-carboxy
2,2,6,6tetramethylpiperidine  1-oxy) with fluoroquinolone
ciprofloxacin demonstrated synergistic effect toward Gram-
negative bacterial biofilms, reducing them by over 93%.
Polymeric nanoparticles co-delivering NO and gentamicin
have shown synergistic effects, with NO exhibiting biofilm
dispersal into a planktonic state and gentamicin killing the
dispersed bacteria more effectively under photoinduction.'*

3.5.2. Combination with Physical Therapies
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NO therapy, when combined with photothermal (PTT) and
photodynamic (PDT) studies, presents a powerful strategy for
treating diverse bacterial infections. Multiple studies have
reported the synergistic approach effectively combats drug-
resistant strains by enhancing antimicrobial effects and
improving the efficacy of light-based therapies.
28,31,114,117,128,133,159,160,192-200 In PDT, NO can react Wlth ROS
generated by photosensitizers (e.g., singlet oxygen) to
produce more reactive and oxidative peroxynitrite (ONOO"),
thereby enhancing the killing effect.® In PTT, NO can
enhance the photothermal effect, allowing for effective
bacterial killing at lower temperatures, which can protect
healthy tissues.” Several studies highlight its effectiveness
against specific pathogens. MDR Gram-negative bacteria
and their biofilms have been targeted through platforms that
integrate single near-infrared laser (NIR)-triggered PTT with
NO release.®?'8 p  aeruginosa infections were
eradicated using red-light responsive NO donor micelles,
often in conjunction with PTT utilizing photosensitizers and
photothermal agents.**®%? MRSA biofilms have been shown
to be susceptible to combined PDT destruction by NO and
NIR-stimulated NO-releasing nanocages.*?***®* S. aureus
biofilms were eradicated by nanoplatforms combining NO
with  PDT and low-temperature PTT. An integrated
phototherapeutic nanoplatform, termed AI-MPDA, was
developed by Zhang et al. for effective S. aureus biofim
eradication. This platform is composed of mesoporous
polydopamine functionalized with L-arginine on its surface
and subsequently loaded with indocyanine green (ICG) via -
m stacking. Upon near-infrared exposure, the Al-MPDA
generates heat and ROS, initiating a cascade catalytic
release of NO from the L-Arg (Figure 4B). This system
leverages NO-enhanced PDT alongside low-temperature
PTT (PTT, <45 °C). In an abscess model, this comprehensive
phototherapy platform achieved nearly 100% biofilm removal,
leading to rapid recovery of infected wounds and a significant
reduction in bacterial colonization.”® Hence, synergistic
PDT/gas/PTT therapy using NO holds significant promise for
the future treatment of bacterial infections.®” This combined
therapeutic strategy leverages NO's antimicrobial properties
and the precision of light-activated treatments to overcome
bacterial resistance, making it a crucial area of research.
Future investigations should aim to fine-tune NO release
kinetics and light irradiation parameters to enhance biofilm
eradication while preserving surrounding tissue integrity.***2%

Prayogik Rasayan

no"+ 0, . No;

A Nitrosative Antibiotics

. 3 . Stress

YN0, Thiol nitrosation .
No' NOT SH » sNO Protein

NO 4 deamination

NO® +0; * ONOO Oxidative Stress

Lipid Improved Antibiotic
peroxidation action

/ ‘ Alive bacteria

DNA deamination
Accelerated ICG release
with the assistance of

’ ,
o ° .0
‘s -
- - ICG Release gy
o
P . W heat
.
W - & —
Sensitive
8
< e

bacteria

5 o e l o o 8 =
N OB | NO enhanced 3 5
- e o PDT ‘-a"@ o8, Damage of bacterial
£ . i Lo membrane due to NO

. NO gas - S
B eV e
Ros '”’/y., ”_<,ﬂ»

W 4 ¢
L-Arginine L-Citrulline 3 Dead bacteria

v »
B
» £ ’
R T
L - & Accelerated death of
. \ . M sensitive bacteria due
¢

Hyperthermia to hyperthermia

Figure 4. A. Schematic of mechanisms of antibiotic potentiation by
NO. Adapted with permission from ref 1% Copyright 2021. American
Chemical Society; B. Schematic illustration of an integrated
phototherapeutic nanoplatform, termed AI-MPDA conjugated with
indocyanine green dye (ICG) for ROS production and L-Arginine for
NO release for S. aureus biofilm eradication. Adapted with permission
from ref.?® Copyright 2020. American Chemical Society.

4. Challenges and Future Prospects

Despite significant advancements, the clinical translation and
widespread adoption of NO-based antibacterial therapies still
face several challenges that require ongoing research and
innovation

4.1. Improving Stability and Shelf-Life of NO Delivery
Systems

The inherent instability and highly reactive nature of NO, with
a short half-life of only a few seconds to minutes, pose
significant challenges for developing practical and storable
NO delivery systems.®® NO donors can degrade
prematurely during storage, handling, or before reaching the
target site, leading to reduced therapeutic efficacy.*® This is
particularly true for small-molecule NO donors, which are
prone to spontaneous decay under physiological factors,
often resulting in quick and uncontrolled release.*> NONOate
compounds are reported to have a half-life of just a few
minutes at 25°C, making their incorporation into drug delivery
systems complex.”® The hydrophilic nature and lability of the
S-NO bond in RSNOs also add to the complexity of
incorporating them into formulations, limiting their use with
certain delivery systems.”® Future research must focus on
designing more stable NO donor molecules and advanced
encapsulation strategies to extend the half-life and improve
the shelf-life of NO-releasing materials. Macromolecular NO
donors, such as those conjugated to polymeric scaffolds,
show promise in improving stability, biodistribution, and
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circulation time.”® Novel materials and functionalization
techniques are needed to protect NO donors from
degradation under various storage and physiological
conditions.”®

4.2. Strategies for Targeted Delivery to Infection Sites

Achieving precise and localized delivery of NO to specific
infection sites is extremely important to maximize therapeutic
efficacy while reducing potential off-target systemic toxicity.?®
NO's short half-life means its effective range from the
production site is limited to about 100-200 um, making highly
targeted and selective delivery essential.”> Non-specific NO
release can lead to reduced efficacy and potential adverse
effects on healthy host cells and tissues, as high
concentrations of NO can be cytotoxic.* Traditional NO
delivery often results in a rapid burst of NO followed by a
progressive decay, which is not ideal for sustained
antibacterial action. Research is moving towards developing
"smart" delivery systems that can respond to specific
biomarkers or environmental cues prevalent in infected
tissues, such as changes in pH, redox potential, or the
presence of bacterial enzymes.”” Enzymatic prodrug
systems where NO production is controlled by specific

enzymes or substrates can finely tune delivery rates 2222

4.3. Emerging Approaches: Computational tools and
Machine Learning in NO-based Therapeutics and
Delivery Systems

The integration of advanced computational tools and
machine learning approaches offers powerful new avenues
for accelerating the design, optimization, and understanding
of NO delivery systems.*

4.3.1. Modeling Antimicrobial Mechanisms

Computational approaches can be used to understand the
mechanisms underlying the antimicrobial action of NO.**%
To comprehensively assess these mechanisms, multiscale
simulations should be employed, pairing molecular dynamics
(MD) simulations to capture NO’s molecular-level damage
with cellular-scale models that reflect its systemic impact on
microbes. This combined approach would help predict how
NO and reactive derivatives like peroxynitrite induce
nitrosative and oxidative stress on bacterial membranes,
proteins, and DNA. Additionally, computational modeling of
biofilms is essential: simulations could elucidate how NO
compromises the extracellular polymeric substance (EPS)
and disrupts quorum-sensing communication, thereby
destabilizing biofilm structure and enhancing susceptibility to
treatment. This includes predicting anti-biofilm activity of
various molecules and training strain-specific models for
targeted treatments.*

4.3.2. Designing and Optimizing NO-Releasing Systems

Computational studies can be used to engineer better NO-
releasing systems. A major challenge is controlling the
release of NO, which has a very short half-life. Quantitative
models can predict the rate and duration of NO release from
different delivery systems, such as nanoparticles or
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hydrogels, helping us adjust their design.** Using
computational methods like molecular docking and SAR
modeling allows scientists to forecast how effective and
specific certain compounds will be against various
microbes.*? Also, machine learning (ML) can be a powerful
tool.” ML approaches can derive enhanced broad-spectrum
antimicrobial peptides by relating descriptors to activity.* By
training ML algorithms on existing data, we can predict the
properties of new NO donors and rapidly identify the most
promising compounds for synthesis.?’® A recent Cell study
demonstrated the power of Al-driven molecular generation in
antibiotic discovery by combining fragment-guided and
unconstrained generative strategies to explore vast chemical
space. It filtered millions of candidates for synthesizability
and activity and validated promising leads both in vitro and in
vivo.*® This framework provides a useful guide for applying
the generative deep learning technique to compounds that
release NO. Unconstrained generation allows for the
discovery of new scaffolds, while established NO-donor
motifs can be used as guiding components. The development
of structurally distinct NO-based treatments with potentially
novel mechanisms of action against resistant microbes could
be accelerated by implementing predictive filters for NO-
release kinetics, antimicrobial activity, and safety, as well as
by using an iterative cycle of generation, prediction,
synthesis, and experimental validation. Likewise, the deep
learning-guided discovery of antibiotic structural classes was
made possible by a recent study by Wong F. et al., which
showed that ML models in drug development can be
explained and offer insights into the chemical substructures
underlying selective antibiotic activity.** These methodologies
could be directly applied to research on NO-releasing
moieties, where a comprehensive collection of compounds
that produce or release NO, along with the associated
cellular toxicity profiles and antimicrobial properties, could be
used to train an Al model (Figure 5). Researchers could
forecast and create novel compounds with improved
antibacterial properties by employing explainable Al to help
the model identify the precise chemical characteristics or
structural configurations responsible for the most efficient and
selective NO delivery.

Furthermore, computational fluid dynamics (CFD) and MD
can simulate how NO-releasing nanoparticles interact with
biological fluids and penetrate complex tissues, informing the
design of systems for targeted delivery to infected sites.® To
improve NO delivery systems, there is a need to enhance
their effectiveness and reduce side effects. Computational
modeling can aid in designing nanoparticles, hydrogels, and
other drug delivery platforms that ensure controlled and
targeted release of NO. For example, technologies such as
NO-releasing porous silicon nanoparticles and polymer-
based systems are promising areas for exploration to
enhance antimicrobial efficacy.’®® A crucial aspect of
developing NO-releasing antimicrobials is ensuring their
safety and biocompatibility. Computational models can
predict the cytotoxicity and pharmacokinetic profiles of NO
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donors, assisting in the design of compounds with minimal
adverse effects on mammalian cells.
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Figure 5. Schematic diagram of how Machine learning can effectively
provide predictions and model validation for antimicrobial activity
using a library of NO-releasing compounds as a training set to predict
novel NO-releasing compounds.

5. Conclusion and Outlook

NO stands as a powerful and versatile tool in the ongoing
battle against antibiotic resistance. Its broad-spectrum
antibacterial activity, potent anti-biofilm capabilities, and
multiple mechanisms of action offer a robust alternative to
conventional antibiotics. Significant advancements in the
development of sophisticated NO delivery systems, including
various nanoparticles, polymeric materials, and hydrogels,
have addressed the challenges of NO's inherent instability,
enabling controlled, sustained, and targeted release. These
innovations have opened diverse biomedical applications,
particularly in combating persistent biofilm infections,
promoting wound healing, and preventing infections on
medical devices.

While challenges remain concerning the long-term stability,
precise targeted delivery, and clinical translation of NO-based
therapies, the outlook is highly promising. Emerging
strategies, such as stimulus-responsive systems and the
integration of computational and machine learning
approaches, are poised to revolutionize the design and
optimization of NO delivery. Continued innovation in material
science, nanomedicine, and computational biology will be
crucial for overcoming these hurdles. By facilitating the
successful clinical translation of NO-based antibacterial
therapies, we can significantly contribute to a new era of
antimicrobial drugs, thereby safeguarding global public health
against the ever-growing threat of drug-resistant pathogens.
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