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Abstract 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nitric oxide is a crucial gasotransmitter with a diverse range of physiological functions, notably including its significant antimicrobial properties. 
This review succinctly summarizes its antibacterial mechanisms and current advancements in NO delivery systems pertinent to infection-
associated biomedical applications. Furthermore, it explores the challenges associated with NO delivery, emphasizing how computational and 
machine learning-based approaches can aid in overcoming these limitations by optimizing design and predicting efficacy. 
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1. Introduction 
 

The escalating challenge of antimicrobial resistance (AMR) 

represents a profound global public health crisis, projected to 

cause over 10 million deaths annually by 2050, surpassing 

mortality rates from diseases like malaria, HIV, and 

tuberculosis combined.
1 

Multidrug-resistant (MDR) bacteria 

like carbapenem-resistant Pseudomonas aeruginosa, 

methicillin-resistant Staphylococcus aureus and vancomycin-

resistant Enterococcus are the major contributors to fatal 

healthcare-associated infections worldwide.
2
 A significant 

compounding factor is the formation of bacterial biofilms, 

particularly on biomedical devices, which drastically 

increases resistance to conventional antibiotics and 

necessitates up to 1000 times higher dosages for treatment.
3
 

At present, the development of innovative antibacterial 

strategies that can circumvent traditional resistance 

mechanisms is a pressing demand. 

Nitric oxide (NO) was recognized as the "Molecule of the 

Year" by Science in 1992 for its diverse physiological 

functions as a gasotransmitter, including vasodilation, 

neurotransmission, and immune regulation.
4
 Besides these 

roles, NO possesses potent, broad-spectrum antimicrobial 

activity against a wide range of pathogens comprising MDR 

bacteria, fungi, and viruses.
5–9

 Its antibacterial efficacy stems 

from inducing severe oxidative and nitrosative stress within 

bacterial cells, culminating in critical cellular damage such as 

DNA lesions, protein modifications, and lipid peroxidation-

mediated membrane disruption.
5
 The multifaceted modes of 

action make bacterial resistance development unlikely, 

providing NO with the critical advantage of circumventing 

typical drug resistance mechanisms, a persistent problem 

with other antibacterial agents.
10

 Crucially, NO also inhibits 

bacterial biofilm formation and disperses established biofilms 

by modulating cyclic di-GMP signaling in bacteria, enhancing 

bacterial susceptibility to host immune responses and other 

antibacterials.
11–14

 These unique properties position 

exogenous NO as a promising therapeutic candidate against 

MDR infections in the ongoing efforts to tackle antimicrobial 

resistance (AMR). 

Despite its immense therapeutic potential, NO's inherent high 

reactivity, gaseous nature, and extremely short biological 

half-life have historically limited its direct clinical 

application.
15,16

 Significant advancements, however, have led 

to the development of sophisticated NO delivery systems 

designed to enable controlled, sustained, and targeted 

release of the molecule at infection sites.
15,17–26

 These 

systems are engineered to respond to specific triggers such 

as light, pH changes, or enzymatic activity present at 

infection sites.
27–31

 

mailto:sverma@iitk.ac.in


Prayogik Rasayan                                                       

https://doi.org/10.53023/p.rasayan-20251028           47

   
 

Prayogik Rasayan 2025, 09(3), 46 - 66 

 

This mini review discusses the antibacterial properties of NO, 

the latest developments in various NO-releasing platforms 

and their diverse biomedical applications in persistent 

infections, medical device coatings, and wound healing. 

Current challenges and prospects are addressed, 

emphasizing the potential role of computational and artificial 

intelligence (AI)-based machine learning (ML) approaches in 

overcoming the limitations.
32–36

 ML-based approaches can 

aid in designing platforms with optimized NO release, 

stability, precise targeted delivery, and predict integration into 

combination therapies for clinical translation.
36–42

 

2. NO Biosynthesis and Its Role as an 

Antibacterial Agent 

This section discusses the pathways of endogenous NO 

production in humans and bacteria and elaborates on the 

molecular mechanisms behind its broad-spectrum 

antibacterial activity. 

2.1. Pathways for NO Biosynthesis 

NO is endogenously produced in the human body for 

regulating vital physiological processes such as 

cardiovascular control, neurotransmission, host immune 

response, and the maintenance of cellular homeostasis.
5
 

Intriguingly, some bacteria also reportedly produce NO for 

modulating their metabolic processes.
43

 Further, we discuss 

the major pathways of endogenous NO production in 

mammals and bacteria. 

2.1.1 . Endogenous NO production in Humans 

The primary source of endogenous NO in humans is 

enzymatic, involving the conversion of L-arginine by the Nitric 

Oxide Synthase (NOS) family of enzymes (Figure 1A).
5
 

These are homodimeric oxidoreductase enzymes that cleave 

L-arginine, producing NO and L-citrulline, and require 

cofactors such as NADPH and oxygen. The availability of 

intracellular L-arginine is a rate-limiting step in NOS-

dependent NO release.
5
 Three main isoforms of NOS 

regulate human NO production. Constitutive NOS (cNOS) 

includes neuronal NOS (nNOS or NOS1), involved in 

neurotransmission, and endothelial NOS (eNOS or NOS3), 

which is crucial for regulating physiological processes like 

vasodilation and angiogenesis. These isoforms typically 

produce NO at low, basal concentrations.
15

 Primarily, 

Inducible NOS (iNOS or NOS2) is expressed in immune 

cells, including macrophages and neutrophils, and in a 

subset of non-immune cells. This expression is typically 

induced in response to inflammatory stimuli, including 

bacterial lipopolysaccharides and certain cytokines. iNOS 

produces significantly higher concentrations of NO over a 

longer duration compared to constitutive NOS, playing a vital 

role in host defense against pathogens and in inflammatory 

responses.
15

 

2.1.2 . Bacterial NO generation 

Interestingly, bacteria themselves can also produce NO 

through various mechanisms. Some bacteria possess their 

own nitric oxide synthases (bNOSs) that can generate NO 

from L-arginine.
43 

However, these bNOSs typically lack an 

essential reductase domain, meaning that for NO generation, 

they often require the assistance of eukaryotic reductases in 

vivo.
24

 Additionally, bacteria can produce NO through NOS-

independent pathways. A notable example is during 

denitrification, an anaerobic respiration process in bacteria, 

where nitrate undergoes stepwise reduction, producing NO 

as an intermediate product.
44

 Bacteria such as Pseudomonas 

aeruginosa and P. stutzeri are notable opportunistic 

pathogens that survive through denitrification in hypoxic 

environments, effectively decomposing NO as part of this 

process, aiding their survival.
44

 Nitrite reduction to NO by 

nitrite reductases (NIR) is another pathway, particularly 

observed in denitrifying bacteria such as Pseudomonas 

thiobacillus (Figure 1A).
25

 Species like Legionella 

pneumophila, Nitrosomonas europaea, and Neisseria 

gonorrhoeae are also noted in contexts related to NO-based 

dispersal in biofilms, suggesting their production of and 

interaction with NO.
45

 

2.2. NO as an Antibacterial Agent 

The endogenous production of NO, often compromised in 

chronic infections, can be mimicked. Exogenous production 

of NO can be achieved via various NO donors directly or by 

incorporating them into smart nanomaterials or polymeric 

delivery systems for controlled and sustained antibacterial 

activity.
21

 NO and its derivatives exert potent antibacterial 

effects, and their efficacy is often dependent on the NO 

concentration, with low levels (<1 µM) involved in signal 

transduction and high levels (>1 µM) associated with 

cytotoxicity. Typically, low concentrations (pM–µM) can affect 

the formation or dispersal of biofilms, while concentrations 

higher than 1 µM are bactericidal.
25

 Exogenous NO 

demonstrates broad-spectrum activity against various 

pathogens, including Gram-negative bacteria such as P.  

aeruginosa, E. coli, Klebsiella pneumoniae, Burkholderia 

cepacia, Serratia marcescens, Vibrio cholerae, 

Fusobacterium nucleatum, and Burkholderia multivorans. It is 

also effective against Gram-positive bacteria like 

Staphylococcus aureus, methicillin-resistant Staphylococcus 

aureus (MRSA), Staphylococcus epidermidis, Listeria 

monocytogenes, Bacillus licheniformis, Bacillus subtilis, and 

Group B Streptococcus, and even Mycobacterium abscessus 

and Streptococcus pneumoniae.
5,15,23,25

 The activity can be 

dose-dependent and varies with bacterial species, with 

Gram-negative bacteria often being more susceptible due to 

their thinner peptidoglycan layer compared to Gram-positive 

bacteria's thicker peptidoglycan layer.
5
 Studies with S. 

pneumoniae showed varying effects of NO depending on the 

infection model. Also, mucoid and non-mucoid strains of P. 

aeruginosa showed different susceptibilities to NO-releasing 

chitosan under varying aerobic and anaerobic conditions.
46

 

This underscores the complexity of NO's interaction with 

different bacterial species and their environments and needs 

to be explored in detail. 
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2.2.1. Mechanisms of Action and Propensity for 

Resistance Development 

NO exerts its antibacterial effects primarily through its 

capacity to generate reactive nitrogen and oxygen species 

(RNS and ROS), which consequently induce cellular stress 

and damage to vital bacterial components. (Figure 1B). 

Alternatively, NO also exerts indirect effects on microbes via 

host immune response modulation.
5
 At bactericidal 

concentrations, NO reacts with oxygen or reactive oxygen 

intermediates like superoxide (O2
), forming highly oxidizing 

species such as peroxynitrite (ONOO) and dinitrogen 

trioxide (N2O3).
5,47

 These reactive products lead to oxidative 

and nitrosative stress, causing significant damage to bacterial 

membrane, DNA, lipids and proteins.
48 

NO and its congeners, 

particularly N2O3, can deaminate DNA bases and cause 

oxidative damage to DNA, leading to abasic sites and strand 

breaks.
5
 Studies with S. typhimurium have shown 

mutagenicity consistent with a DNA deaminating mechanism 

upon exposure to NO donor compounds.
5
 Importantly, NO 

has also been found to inhibit DNA alkyl transferases 

involved in DNA repair by reacting with their sulfhydryl 

groups, thereby exacerbating DNA damage.
15

 Peroxynitrite, 

in particular, can initiate lipid peroxidation in bacterial 

membranes, leading to membrane destruction and 

compromised cell integrity.
47

 Elevated levels of NO and O2
 

within lipid membranes enhance the generation of nitrosative 

and oxidative species like N2O3 and NO2, contributing to the 

membrane destruction and compromised cell integrity.
48 

NO 

interacts with proteins through heme groups, iron-sulfur 

clusters, reactive thiols, and aromatic amino acid residues.
5
 

Nitrosative species like S-nitrosothiols and N2O3 nitrosate 

thiols on both cell surface and intracellular proteins, altering 

vital protein functions, leading to their inactivation.
15

 The 

modification of surface thiols is reported to be responsible for 

S-nitrosothiol–mediated Bacillus cereus spore outgrowth 

inhibition.
5
 It has been reported that peroxynitrite and NO2 

can also nonspecifically cause oxidation of proteins at 

various cellular sites. This includes the inhibition of key 

metalloproteins in bacterial respiratory reactions and the 

destruction of adhesion proteins, particularly in prokaryotic 

cells that are highly sensitive to NO due to their reliance on 

iron-sulfur clusters.
15

 NO and RNS degrade these clusters, 

releasing iron. This free iron then catalyzes the formation of 

more free radicals, which in turn damage DNA and cell 

membranes.
15  

A significant advantage provided by NO’s multiple and 

diverse antimicrobial pathways is its ability to bypass typical 

antibiotic resistance mechanisms. They make it unlikely for 

bacteria to develop resistance, as observed in studies where 

no significant increase in the minimum inhibitory 

concentration was found for S. aureus, MRSA, S. 

epidermidis, E. coli, and P. aeruginosa.
10 

However, studies 

have shown that bacteria have developed certain 

mechanisms to resist NO toxicity. P. aeruginosa and 

Salmonella enterica detoxify NO by employing enzymes like 

nitric oxide reductase (NOR) and flavohemoglobin, which 

convert NO into less harmful compounds such as nitrous 

oxide or nitrate. 
44,49

 Enterohemorrhagic E. coli also relies on 

NOR for survival within macrophages.
44

 Additionally, Gram-

positive bacteria such as Staphylococcus aureus can 

produce their own NO via bNOS, which aids in resisting 

immune responses and enhances antibiotic tolerance.
50–52

 

This endogenous NO production in species like S. aureus 

can significantly increase their ability to survive antibiotic 

treatments.
50 

These diverse strategies underscore the 

complex interplay between bacterial defense and NO-based 

antibacterials, highlighting the need for developing innovative 

NO donor systems capable of circumventing these 

sophisticated defense mechanisms. 
 

 

Figure 1. A. Schematic of endogenous nitric oxide (NO) production in 

mammalian and bacterial systems; B. Proposed antibacterial 

mechanisms of NO against planktonic bacteria and biofilms. Adapted 

with permission under Creative Commons Attribution License (CC-BY) 

from ref.
25

 Copyright 2022, The Authors. Published by MDPI, Basel, 

Switzerland. 

2.2.2. Biofilm Inhibition and Dispersion 

NO plays a crucial role in regulating bacterial biofilms by 

acting as an important inhibitor and dispersant.
11,12

 The 

biofilm life cycle, including attachment, colonization, 

maturation, and dispersal, is governed by the intracellular 

levels of second messenger cyclic-diguanylate-guanosine 

monophosphate (c-di-GMP).
53,54

 Elevated intracellular levels 

of c-di-GMP promote biofilm formation, whereas lower 

concentrations induce bacteria to adopt a free-living 

planktonic mode of existence.
54

 NO mediates biofilm 

dispersal by reducing intracellular c-di-GMP concentrations, 

thereby triggering the synthesis and release of hydrolytic 

enzymes that degrade the biofilm matrix.
11,55

 The impact of 
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NO on biofilm inhibition and dispersal has been observed 

across a range of various Gram-negative bacteria, such as S. 

marcescens, V. cholerae, E. coli, F. nucleatum, P. 

aeruginosa and L. monocytogenes. Biofilms of Gram-positive 

bacteria like B. licheniformis and S. epidermidis, as well as 

clinical and MDR isolates and even mixed species biofilms 

from water distribution and treatment systems have been 

reported to be inhibited by NO.
13,25,56,57

 Low levels of 

exogenous NO, such as 0.025–0.50 × 10
-9
 M, have been 

demonstrated to disperse mature P. aeruginosa biofilms over 

a period of 24 hours, initiating bacterial detachment while 

preserving the viability of planktonic bacteria. This dispersal 

makes bacteria more susceptible to antimicrobial treatments, 

as demonstrated by the increased efficacy of chlorine 

disinfection against multi-species biofilms pretreated with 

NO.
58

 Additionally, sustained release of NO via nanoparticles 

has shown considerable promise in the prevention and 

disruption of S. aureus adhesion and biofilm formation 

inhibition in a preclinical rat model of central venous 

catheter.
59

 NO can also modulate bacterial communication 

pathways such as quorum sensing, thereby contributing to its 

anti-biofilm properties.
60

 

3. Advancements in NO Delivery Systems for 

Antibacterial Applications 

The inherent reactivity and short half-life of NO necessitate 

advanced delivery strategies to harness its therapeutic 

potential effectively.
15,16

 There is a persistent requirement for 

systems capable of spatiotemporally regulating NO 

concentrations in intended applications, particularly for 

exploring its utility in translational clinical research. These 

systems aim to provide controlled, sustained, and targeted 

release of NO to overcome its gaseous nature and high 

reactivity in biological environments.
18,25,61–64

 

3.1. NO Donors  

NO donors can generate and release exogenous NO, and 

their design focuses on tuning the release rate and kinetics to 

match desired therapeutic applications.
21,65

 These donors are 

crucial for leveraging NO's therapeutic potential, particularly 

in antibacterial applications. NO donors can be broadly 

classified based on their chemical nature and mechanisms of 

NO release. The most studied and utilized types include N-

Diazeniumdiolates (NONOate), S-Nitrosothiols (RSNOs), 

Furoxans, Metal Nitrosyl Complexes and Organic Nitrates 

(Figure 2).
21

 

3.1.1. N-Diazeniumdiolates (NONOates) 

NONOates are a well-studied class of NO donors recognized 

for their capacity to spontaneously release NO.
17

 Under 

physiological conditions, a single NONOate molecule can 

spontaneously release two molecules of NO.
 

This 

spontaneous release makes them valuable for mimicking 

transient, low-level NO release. In antibacterial therapy, 

NONOates have shown efficacy against various pathogens. 

Diethylenetriamine (DETA) NONOate and spermine 

NONOate have demonstrated time- and concentration-

dependent antibacterial activity against B. pseudomallei.
66,67 

DETA NONOate has also been utilized against 

uropathogenic E. coli.
66,68

 To effectively control their 

spontaneous NO release and achieve therapeutic 

concentrations, NONOates are frequently incorporated into 

various delivery systems, such as polyamidoamine (PAMAM) 

conjugates, pluronic F68-branched polyethyleneimine-

NONOate (F68-BPEI-NONOate), β-cyclodextrin derivatives, 

alginates, and polymeric nanoparticles.
69–76

 These systems 

help in modulating the NO release kinetics to provide 

sustained low concentrations for biofilm dispersal or higher 

concentrations for bactericidal effects.
45 

 

3.1.2. S-Nitrosothiols (RSNOs) 

S-Nitrosothiols (RSNOs) represent naturally occurring NO 

reservoirs and carriers within biological systems, generally 

exhibiting greater stability than NONOates. They release a 

single molecule of NO under specific conditions, including 

exposure to UV light, elevated temperatures, certain metal 

ions, acids, or enzymatic activity.
19

 This conditional release 

mechanism offers a way to control NO concentrations. The 

conversion of RSNOs to NO is a primary mechanism for their 

antimicrobial effects, particularly through inducing DNA 

damage at cytotoxic NO concentrations.
15

 A novel bifocal 

antimicrobial agent, SNAPicillin, was developed using SNAP 

(S-nitroso-N-acetylpenicillamine), an RSNO donor, to initially 

release NO gas to disperse biofilm matrices. This was 

followed by the combined action of NO and ampicillin, 

showing enhanced lethality against P. aeruginosa and MRSA 

biofilms.
77

 Studies on RSNO donors like S-nitrosoglutathione 

(GSNO), S-nitrosocysteine (CySNO), S-nitroso-N-

acetylcysteine (SNAC), and (2-(2-S-nitroso propionamide) 

acetic acid (GAS) against E. coli and S. aureus have shown 

potent antibacterial activity.
25,78

 RSNOs can also be 

integrated into medical-grade polymeric devices for 

prolonged and controlled NO release, enabling the 

maintenance of effective antibacterial concentrations over 

time.
79,80

 

3.1.3. Furoxans (1,2,5-oxadiazole N-oxides) 

This class of NO donors is characterized by its requirement 

for a thiol attack to initiate the release of NO. This 

mechanism allows for a degree of control over NO release, 

potentially enabling the achievement of a specific 

antibacterial concentration.
25

 Certain furoxan compounds 

have demonstrated notable antibacterial capabilities. 

Specifically, 3-{[2-(dimethylamino)ethyl]oxy}-4-phenylfuroxan 

and 3-nitro-4-phenylfuroxan have proven effective in 

eliminating P. aeruginosa biofilms as well as exhibiting strong 

bactericidal activity against it.
81,82

 

3.1.4. Metal Nitrosyl Complexes 

These complexes contain at least one NO functional group 

directly bonded to a central metal atom. NO release from 

these complexes can be triggered by light or single-electron 

reduction, providing another avenue for controlled delivery 

and concentration.
25,31

 Sodium nitroprusside (SNP) is a 



Prayogik Rasayan                                                       

https://doi.org/10.53023/p.rasayan-20251028           50

   
 

Prayogik Rasayan 2025, 09(3), 46 - 66 

 

prominent example within this category, shown to disperse P. 

aeruginosa biofilms, with studies indicating that 250 µM SNP 

after 24 hours can achieve 63.5% dispersal.
65

 However, a 

significant limitation of SNPs is the cytotoxicity arising from 

the dissociation of cyanide during its administration, which 

necessitates careful monitoring and minimal dosing to avoid 

harmful high concentrations.
45

 

3.1.5. Organic Nitrates 

Organic nitrates are nitrite esters featuring the nitroxide 

functional group (-ONO2). Nitroglycerin (glyceryl nitrate, GTN) 

is a historic example. While isosorbide mononitrate (ISMN) 

has functioned as an effective NO donor in nanoparticle and 

gel-based delivery systems against S. aureus, its clinical 

safety in this application requires further research.
83,84

 The 

challenge with organic nitrates is often in achieving 

sustained, non-toxic NO concentrations.
25,66

 

3.1.6. Other NO Donors 

Beyond the primary classes of NO donors, various other 

compounds and strategies are being explored for their NO-

generating capabilities in antibacterial therapy. These include 

nitroaromatic compounds, such as specifically designed 

nitrobenzene derivatives, which release NO via metabolic 

processes and have shown promising antibacterial 

effects.
85,86

 Another class includes Inorganic nitrites, such 

as NaNO2, which serve as specific NO donors, particularly in 

hypoxic or acidic conditions, with nitrite being reduced to 

NO.
23,66,87

 In addition, L-arginine-based approaches 

leverage the natural precursor for NO production, with 

exogenous L-arginine enhancing NO synthesis.
87,88

 

Innovative approaches also include NO-donating 

antimicrobial peptides, where peptides are functionalized 

with NO-donor moieties or delivery systems for controlled 

release that can be utilized to enhance bactericidal activity 

and biofilm dispersion.
89,90

 Photolabile NO donors such as N-

Nitrosamines are also an emerging notable class offering 

precise spatial and temporal control over NO release upon 

photoirradiation.
91

 Furthermore, electrochemical methods 

offer a controlled way to generate and deliver NO, especially 

for localized applications on medical devices. These methods 

typically involve the electrochemical reduction of nitrite ions, 

often catalyzed by metal complexes such as copper-ligand 

complexes or iron sulfide nanoclusters, by applying a specific 

voltage to release gaseous NO 
92–95 

While the primary focus of this review remains on discussing 

the role of NO and its donors in antibacterial therapy, it is 

important to mention that our laboratory has also contributed 

to understanding NO's broader therapeutic potential through 

innovative chemical scaffolds for NO release.
17,96

 This 

includes studies on peptide-based self-assembling soft 

structures for releasing intracellular NO and promoting 

neurite outgrowth, as well as for NO-induced differentiation of 

neuroblastoma cells.
97,98 

Furthermore, we have also 

investigated the anti-proliferative effects of purine-based 

ligands with sustained nitric oxide release in the HepG2 

cancer cell line.
99 

These diverse NO-releasing scaffolds, 

although initially developed for neuroprotection or anti-cancer 

applications, could potentially be modified through altered NO 

release kinetics or surface functionalization to target bacterial 

cells and biofilms for antibacterial therapies. 

Figure 2. Major classes of NO donors used in antibacterial studies.
100

 

(DETA) NONOate: Diethylenetriamine N-diazeniumdioltes; GSNO: S-

nitrosoglutathione; SNAP: S-nitroso-N-acetylpenicillamine; CySNO: S-

nitrosocysteine; SNAC: S-nitroso-N-acetylcysteine; GTN: Glyceryl 

Nitrate (Nitroglycerin); ISMN: Isosorbide mononitrate; SNP: Sodium 

nitroprusside. 

3.2. Stimuli-Responsive Release (pH, light, enzymes, 

ROS) 

To achieve precise control and localized delivery, NO donors 

are often designed to be stimuli-responsive, releasing NO in 

response to specific physiological or external triggers such as 

pH, light, intracellular enzymes and ROS, temperature and 

metal ions (Figure 3A).
101

 Many infection sites, such as areas 

of inflammation or bacterial growth, exhibit lower pH.
101

 NO 

donors have been engineered to release NO preferentially in 

these acidic conditions, enabling targeted delivery.
29,102

 A 

study by Choi et al. reported a pH-jump reagent 2-

nitrobenzaldehyde (o-NBA), encapsulated within mesoporous 

silica nanoparticles (MSNs) and further coated with 

NONOates and calcium phosphate (pH@MSN-CaP-NO), for 

targeted NO delivery. The composite led to corneal wound 

healing, activated by light exposure at 365 nm. (Figure 3B).
103

 

Researchers have also developed small-molecule 

photosensitized NO donors triggered by various wavelengths, 

including visible light (e.g., 390 nm, 405 nm, 500 nm) and 

near-infrared light (e.g., 800 nm, 980 nm), which can 

penetrate deeper into tissues than UV light.
27,104–106

 

Manganese-nitrosyl sol-gel coatings have been shown to 

release NO upon visible and NIR light exposure, leading to 

significant reduction of S. aureus, E. coli, and A. baumannii 

bacterial loads.
107

 Some NO delivery systems leverage 

specific enzymatic activity to trigger NO release.
30,86,108–110

 

Bacterial nitroreductase, an enzyme almost exclusively 

present in bacteria, activated nitroaromatic-protected 

diazeniumdiolate prodrugs, leading to site-specific NO 

release and bacterial killing.
86

 Systems designed to release 

NO in the presence of elevated ROS, often found in 

inflammatory and infectious environments, have allowed for 

targeted NO generation.
111

 The catalytic release of NO from 

S-nitrosothiols has also been observed with various metallic 
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ions, notably Cu
2+

, Au
3+

, Pd
2+

, Pt
2+

, V
3+

, In, Hf
4+

, Fe
2+

, Sn
2+

, 

and Zr
4+

. Copper ions stand out as the most thoroughly 

examined catalysts, driving the breakdown of RSNOs to 

generate NO.
35,78,112

 While substantial progress has been 

made in leveraging various triggers, the future of these 

intelligent systems in antibacterial applications is poised for 

further refinement, with computational and artificial 

intelligence-based machine learning approaches expected to 

play a crucial role. 

3.3. NO Delivery Systems for Controlled Release 

Various materials serve as scaffolds or encapsulants for NO 

donors, enabling controlled release kinetics and targeted 

delivery to maximize NO's therapeutic efficacy upon 

exposure to different stimuli. Major delivery systems that 

have been utilized in biomedical applications pertinent to 

infections include nanoparticle-based systems, polymeric 

materials and hydrogels (Table 1).
15,18,26,64,113

  

3.3.1. Nanoparticle-Based Systems 

Nanoparticles are widely investigated for NO delivery due to 

their ability to encapsulate NO donors, protect them from 

premature degradation, and facilitate targeted and localized 

sustained release of NO under various stimuli and triggers in 

multicomponent delivery systems. These can improve 

bioavailability, reduce systemic toxicity to host tissues, and 

enhance penetration into bacterial biofilms.
63,83,102,105,114–119

 

3.3.1.1. Polymeric Nanoparticles 

These biodegradable and biocompatible nanoparticles, often 

made from polymers like polyglycolic acid (PGA), polylactic 

acid (PLA), poly(lactic-co-glycolic acid) (PLGA) and chitosan, 

can encapsulate NO donors for sustained release.
71,83,116,119–

123
 Nanoparticles formulated with PLGA loaded with ISMN 

have demonstrated potent antibacterial effects against S. 

aureus biofilms.
63,83

 Liu et al. reported co-assembled NO-

releasing nanoparticles combined with Pluronic F127 

exhibiting potent antimicrobial efficacy against MRSA 

strains.
124,125

 Furthermore, NO-releasing nanoparticles 

incorporated into a chitosan hydrogel-glass composite have 

been reported with augmented antimicrobial activity, 

preventing biofilm formation on medical catheters.
59

 Nonoate-

loaded chitosan oligosaccharides (COS-EA/NO) have also 

been reported to exhibit bactericidal activity against S. aureus 

and P. aeruginosa strains.
126

 Polyethylenimine (PEI) 

NONOates doped PLGA nanoparticles have been designed 

for extended NO release over 4 days to effectively bind to 

and diffuse into MRSA biofilms.
122 

Dendrimers, a class of 

synthetic polymers, have been modified with NO donors to 

effectively deliver NO in high concentrations and control its 

release kinetics.
127,128

 Some bifunctional dendrimers co-

deliver NO and ursodeoxycholic acid for anti-inflammatory 

synergy.
129

 Another dual-action approach involved NONOate-

functionalized PAMAM dendrimer and low molecular weight 

chitosan (CS) conjugates, enabling simultaneous, controlled 

delivery of methicillin and NO (CS-PAMAM-MET/NONOate), 

leading to significant bacterial killing and improved wound 

healing against Gram-positive, Gram-negative, and MRSA 

infections.
130

 

 

Figure 3. A. Various physiological and external stimuli utilized for NO 

release; B. Schematic of pH@MSN-CaP-NO mediated smart NO 

release. Reprinted with permission from ref.
103

 Copyright 2016. 

American Chemical Society. 

3.3.1.2. Inorganic Nanoparticles 

Mesoporous silica nanoparticles (MSNs) are frequently used 

due to their large surface area and porous structure, allowing 

efficient loading and release of NO donors in a controlled 

manner.
63,131,132

 Studies indicate that silica nanoparticles 

releasing NO exhibit superior antibacterial efficacy against P. 

aeruginosa in comparison to small-molecule NO donors, 

while concurrently minimizing cytotoxicity towards healthy 

cells.
131

 These nanoparticles have additionally shown 

effective control and killing of P. aeruginosa, E. coli, S. 

aureus, S. epidermidis, and C. albicans biofilms.
22,63

 

Furthermore, metallic nanoparticles, such as gold and silver, 

have distinct optical and electronic characteristics that aid in 

NO delivery and can be combined with MSNs for 

multifunctional applications.
63

 Gold Core@Shell MSNs 

combined photothermal therapy with NO release have been 

reported to significantly reduce S. aureus biofilm integrity in 

literature.
114,133

 

3.3.1.3. Lipid-Based Systems 

Liposomes, with their lipid bilayer structure, can encapsulate 

NO donors, prevent rapid decomposition and allowing for 
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prolonged NO release. They offer good biocompatibility and 

can be modified for targeted delivery.
63

 Cholesterol moieties 

can enhance donor affinity and facilitate liposome transport. 

Liposomal encapsulation of NO precursors like ISMN has 

been shown to substantially increase their anti-biofilm effects 

against S. aureus, positioning them as a potential agent for 

topical clinical administration.
134

 Solid lipid nanoparticles also 

serve as a more robust and regulated release platform for 

NO compared to conventional liposomes.
63,115

 

3.3.2. Polymeric Materials and Coatings 

Integrating NO donors directly into polymeric materials or 

developing NO-releasing coatings for surfaces is a key 

strategy for preventing infections, particularly on medical 

devices.
19,24,135–137

 NO-releasing polymeric coatings are 

applied to catheters, stents, and other implants to prevent 

adhesion and consequent bacterial biofilm formation.
24,135,138

 

These materials can continuously release NO at the surface, 

creating an antimicrobial environment. SNAP has been 

extensively incorporated into biomedical-grade polymers, 

showing potential for long-term applications.
139,140

 Elast-Eon 

E2A polymer catheters doped with SNAP showed a 

significant reduction in thrombosis and bacterial adhesion 

during implantation for 7 days in sheep veins.
141,142 

Silicone 

Foley urinary catheters infused with NO-releasing materials 

have been developed for the prevention of catheter-

associated urinary tract infections (CUTIs).
77,143

 CarboSil 

2080A, releasing NO with an SP60D60 top-coated polymer, 

reduced S. aureus cell count by 96% compared to 

control.
144,145  

Advanced NO-releasing catheter models using 

diblock copolymer brushes made with uniform high-density 

precision have been reported to reduce >99.99% biofilm of 

various Gram-positive and Gram-negative bacteria, even 

outperforming commercial silver catheters.
146

 Polymeric films 

and electrospun fibers incorporated with NO donors have 

served as active wound dressings and in other surface 

applications.
18,24,139,147–151 

Electrospun polyurethane fibers 

doped with silica particles releasing NO have demonstrated 

sustained NO release for up to two weeks, allowing release 

for a longer duration compared to fibers doped directly with 

NO donors.
152

 

3.3.3. Hydrogels and Topical Formulations 

Hydrogels, as biocompatible, soft, and water-swollen polymer 

networks, are excellent candidates for localized and topical 

NO delivery.
26,153,154

 Hydrogels can encapsulate NO donors 

and release NO in a controlled manner, making them suitable 

for treating skin infections, chronic wounds, and other 

localized conditions where direct application is feasible.
153,155

 

Their tunable structures allow for flexible control over NO 

release, as has been reported by altering the weight content 

of polyethylene glycol (PEG).
26

 NO-releasing ointments have 

been shown to improve healing activity in skin-wounded 

animal models, promoting re-epithelialization, granulation 

formation, collagen deposition, and angiogenesis in the early 

phases of wound healing.
26,156

 An L-Arg- and H2O2-

encapsulated hydrogel has been reported to continuously 

generate NO, mediating chemotaxis of macrophages and 

fibroblasts to the site of wound and promoting synthesis of 

collagen, thereby accelerating wound closure and dermal 

regeneration.
157

 Studies have also shown that NO released 

from NO-containing graphene oxide nanocarriers embedded 

in hydrogels can accelerate the scarless repair of burned skin 

by inhibiting microorganisms and promoting pro-

vascularization activities.
118,158

 NO-loaded metal-organic 

frameworks have also demonstrated potential for skin repair, 

increasing wound closure in vitro.
112,159,160

 Cream formulations 

containing GSNO have also demonstrated significant killing 

against S. epidermidis, S. aureus, and P. aeruginosa.
45,66 

3.4. Gaseous NO Delivery 

While most current research focuses on donor-based 

systems, direct administration of gaseous NO has specific 

clinical applications, primarily for pulmonary conditions 
20,95,161,162

. Inhaled NO is an FDA-approved treatment for 

pulmonary hypertension.
161

 It has also shown promise in 

limited clinical studies for its antimicrobial activity against 

non-tuberculous mycobacterial lung disease.
163

 Studies have 

demonstrated that exogenous gaseous NO has a significant 

effect on the P. aeruginosa viability in rat lungs and 

eradicates MDR S. aureus and E. coli strains in vitro with 

intermittent exposure over 4 hours (160–200 ppm for 30 

min).
164

 Clinical findings indicate that high-dose inhaled nitric 

oxide is a promising therapeutic option, particularly in cases 

involving highly resistant bacterial strains.
100

 However, direct 

delivery of gaseous NO to deep-seated or localized infection 

sites is therapeutically challenging due to its short half-life 

and potential toxicity at high concentrations if uncontrolled.
100 

Thus, it is imperative to explore novel strategies for inhaled 

NO therapy to improve patient outcomes. 

Table 1. Recent advanced NO delivery platforms for 

infection-associated biomedical applications 

Donor 
class 

NO 
Delivery 
System 

Stimulus 
Application
s 

Ref 

N-
Diazenium
diolates 
(NONOates
) 

PLGA-
PEI/NONOa
te 
nanoparticle
s 

— 

MRSA 
biofilm 
eradication 
in diabetic 
wound 
infection 

122
 

Cinnamalde
hyde-
derived T

2
A

2
 

(Cin-T
2
A

2
) 

with 
diethylenetri
amine 
(DETA)-
NONOate 

— 

Bactericidal 
against 
MDR S. 
Staphylococ
ci and its 
biofilm  

165
 

PVP and 
EC 
nanofibers 
loaded with 
Proline 
(PROLI), 
dipropylenet
riamine 
(DPTA), and 
DETA 
NONOates 

— 

Growth 
inhibition of 
S. aureus 
and P. 
aeruginosa 

166
 

Diethylamin
e (DEA) 

— 
E. coli 
infection 

167
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NONOate treatment, 
proof of 
concept to 
pursue as 
hand 
sanitizers 

Chitosan 
(CS)- 
Poly(amidoa
mine) 
(PAMAM)-
MET/NONO
ate 

— 

MRSA 
infection 
treatment 
via biofilm 
penetration 

130
 

pH@MSN-
CaP-NO, 
pH-jump 
reagent 2-
nitrobenzald
ehyde 
loaded into 
MSNs 
coated with 
NONOates 
and calcium 
phosphate 

Light 
irradiation 
at 365 nm 
and pH 
5.0 

Targeted NO 
delivery for 
corneal 
wound 
healing 

103
 

 

NO-
releasing 
polymer 
coatings of 
PET and SE 
immobilized 
with 
aminosilane 
precursors 
tethered 
with 
NONOates 

— 

Reduction of 
P. 
aeruginosa 
adhesion 
and biofilm 
formation  

168
 

Dendritic 
Fe3O4@Pol
y(dopamine) 
PDA@PAM
AM@NONO
ate 
nanocompo
site 

808 nm 
NIR light 

Synergistic 
Phototherm
al Therapy 
against E. 
coli and S. 
aureus 

128
 

S-
Nitrosothio
ls (RSNOs) 

SNAP 
coupled to 
ampicillin 

— 

Antibiotic 
potentiation 
of ampicillin 
against 
biofilm 
formation 

 
169

 

SNAP-Se 
polymer 
composites 

Selenium 
(Se) 

Growth 
reduction of 
adhered S. 
aureus  and 
E. coli cells 

170
 

Elast-eon 
E2As 
polymer 
coatings 
doped with 
SNAP 

— 

Reduction of 
bacterial 
adhesion 
and 
thrombusaft
er 7 days of 
intravascular 
implantation 
in sheep 

141
 

CuS/NO 
hydrogel 

1065 nm 
Near-
Infrared 
light, 
Copper 
ions 

Phototherm
al therapy 
involving 
infection 
elimination 
and wound 
repair 

171
 

GSNO-
doped 
nanofibrous 
scaffolds 
made of 
zein (ZN) 

— 

Biodegradab
le fibers 
killing 
adhered S. 

aureus and 
E. coli  

172
 

and silk 
fibroin (SF) 

Chitosan 
(CS)/GSNO 
film 

— 

Antibacterial 
activity 
against S. 
aureus and 
P. 
aeruginosa 
with 
accelerated 
healing and 
epithelializat
ion in a rat 
wound 
model 

173
 

GSNO-
doped 
Tryptophan-
poly(ester 
urea) 
(PEUs)/PCL 
electrospun 
composite 
mat 

— 

S. aureus 
biofilm 
inhibition 
and wound 
healing 

174
 

Furoxans 

3-nitro-4-
phenylfurox
an 

Thiol-
mediated 
activation 

Pseudomon
as biofilm 
inhibition 
activity 

82
 

FuNPs 
combined 
with 
Polymyxin B 

Thiol-
mediated 
activation 

Activity 
against A. 
baumannii, 
P. 
aeruginosa, 
K. 
pneumoniae

, and E. coli 
strains 

175
 

FOTyr-AMP 
Thiol-
mediated 
activation 

Dual 
antibiofilm 
efficacy 
against E. 
coli and S. 
aureus 

89
 

Nitrofuroxan
oquinoline 

Thiol-
mediated 
activation 

— 
176

 

Metal 
Nitrosyl 
Complexes 

Ti 
(Titanium)-
PDA@SNP- 
OGP 
(osteogenic 
growth 
peptide) 

808 nm 
NIR light 

Phototherm
al therapy 
eradicating 
MRSA 
biofilms and 
enhancing 
osteointegra
tion in Ti 
bone 
implants in 
vivo  

177
 

A tannic 
acid-thioctic 
acid (TATA) 
based 
supramolec
ular 
hydrogel 
(MPCST) 
with SNP 
and CeO2 

loaded on 
MoS2 
nanoflakes 
coated with 
PDA 

808 nm  

PTT 
resulting in 
antibacterial 
and healing 
activity in 
oral ulcers 

178
 

SNP@PCN
@Gel 
hydrogels 
in carboxym
ethyl 
chitosan 

660 nm 
light 

PTT, PDT, 
chemodyna
mic, gas and 
ion therapy 
to promote 
healing in S. 

179
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(CMCS) 
polymer 
matrix 

aureus 
infected 
wounds.  

Inorganic 
Nitrite 
(NaNO2) 

NO-TS 
(thiolated 
starch) 
nanoparticle
s with 
gelatin 

— 

Antibacterial 
activity 
against E. 
coli 

180
 

L-Arginine 

CAT/bArg/G
SNO 
hydrogel 

Nitric 
Oxide 
Synthase 
activation 

Anti-S. 
aureus and 
E. coli 
activity and 
promotes 
chronic 
wound 
healing 

181
 

L-
Arg/GOx@
CuBDC 
(MOFs) 
composite 

Enzymatic 
activation 
by 
Glucose 
oxidase 
(GOx) 

Biocompatib
le, potent 
activity 
against E. 
coli and S. 
aureus 

182
 

L-Arg- Gold 
nanoparticle
s loaded 
(AG)-DMSN 
dendritic 
mesoporous 
nanoparticle
s 

Enzymatic 
activation 
by GOx 

Non-toxic, 
selective 
elimination 
of S. aureus 
biofilms in 
vivo 

183
 

Platelet rich 
fibrin A-
PRF/CS/PE
G sponge 
layer and L-
Arg/chitosan 
nanofiber 

— 

Antibacterial 
activity 
against E. 
coli and S. 
aureus, 
wound 
healing and 
skin tissue 
regeneration 

184
 

BH + 
POM@L-
Arg bilayer 
hydrogel 

Peroxide 
microenvir
onment 

Antibacterial
, anti-
inflammator
y and 
diabetic 
wound 
healing 
activity 

185
 

CMCS-HA 
hydrogel 
incorporatin
g PDA, 
porphyrin 
and L-Arg 

660 nm 
and 808 
nm, ROS 

PTT, PDT 
and gas 
therapy 
resulting in 
activity 
against S. 

aureus and 
MRSA, also 
promotes 
wound 
healing 

186
 

GOA@HG 
cryogel 
loaded with 
glucose 
oxidase and 
L-Arg 

Glucose 
oxidase 
mediated 
activation 

Infected 
diabetic 
wound 
dressing 

187
 

N-
Nitrosamin
es 

Palladium 
(II) 
tetraphenylt
etrabenzopo
rphyrin 
(PdTPTBP) 
incorporated 
coumarin-
based 
delivery 
micelles   
(CuON(NO)
-R) loaded 

630 nm 
Red Light 

Photorespon
sive 
antibiotic 
combination 
treatment for 
P. 
aeruginosa 
biofilm 
dispersal 
and wound 
abscess. 

188
 

with N-
Nitrosamine 
and 
Ciprofloxaci
n 

Gaseous 
NO 

Delivery via 
inhalation 

Direct 
administra
tion 

Lung 
infections 

162
 

Abbreviations: PLGA: Poly(lactic-co-glycolic acid), PEI: 

Polyethyleneimine; T
2
A

2
: Two tailed antimicrobial 

amphiphiles, PVP: Polyvinylpyrrolidone, EC: Ethyl Cellulose, 

MET: Methicillin, MSN: Mesoporous Silica Nanoparticles, 

CaP: Calcium phosphate, PET: Poly(ethylene terephthalate), 

SE: Silicone elastomer, SNAP: S-Nitroso-N-

acetylpenicillamine, CuS: Copper Sulfide, FuNPs: Furoxan-

based nanoparticles, PCL: Polycaprolactone, FOTyr-AMP: 

Antimicrobial peptide conjugated 4-(4-(l-alanine methyl ester-

3-yl)-phenoxy)-3-(phenylsulfonyl)-1,2,5-oxadiazole-2-oxide 

(FOTyr), PDA: Poly(dopamine), SNP: Sodium Nitroprusside, 

PAMAM: Polyamidoamine, MoS2: Molybdenum sulfide, PCN: 

Polymeric Carbon Nitride, CAT: adhesive hydrogels prepared 

using adenine- and thymine-modified chitosan (CSA and 

CST), GSNO: S-nitrosoglutathione, CuBDC: Copper metal 

organic framework, PEG: Polyethylene glycol, BH + POM@L-

Arg: Bilayer hydrogel containing Polyvinyl alcohol (PVA), 

hydroxypropyl methyl cellulose and chitosan loaded with L-

Arginine modified polyoxometalate nanoclusters, CMCS: 

Carboxymethyl chitosan, HA: Hyaluronic acid, GOA@HG: 

Glucose oxidase (GO) and L Arginine (A) incorporated into 

HA aldehyde methacryloyl (H) and gelatin methacryloyl (G) 

cryogels. 

3.5. Synergistic Therapies 

3.5.1. Antibiotic Potentiation 

NO can act synergistically with other therapeutic modalities, 

significantly enhancing their antibacterial efficacy and 

potentially reducing the dosage of conventional treatments 

required.
71,106,189

 NO can increase bacterial susceptibility to 

antibiotics by disrupting protective biofilm structures, 

interfering with bacterial stress responses, and enhancing 

antibiotic penetration into bacterial cells (Figure 4A).
190

 

Studies have confirmed that combinations of NO with various 

antibiotics, like tobramycin, ciprofloxacin and colistin, are 

often synergistic or additive, with no antagonism observed 

against multiple MDR bacteria.
25

 NO, combined with 

tobramycin and colistin enhanced the susceptibility of S. 

aureus and P. aeruginosa, while NO-donating 

fluoroquinolone/oxime hybrids were found to be more potent 

than their parent compounds.
42

 The combined use of 

nitroxide carboxy-TEMPO (4-carboxy 

2,2,6,6tetramethylpiperidine 1-oxy) with fluoroquinolone 

ciprofloxacin demonstrated synergistic effect toward Gram-

negative bacterial biofilms, reducing them by over 93%.
191

 

Polymeric nanoparticles co-delivering NO and gentamicin 

have shown synergistic effects, with NO exhibiting biofilm 

dispersal into a planktonic state and gentamicin killing the 

dispersed bacteria more effectively under photoinduction.
106

 

3.5.2. Combination with Physical Therapies 
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NO therapy, when combined with photothermal (PTT) and 

photodynamic (PDT) studies, presents a powerful strategy for 

treating diverse bacterial infections. Multiple studies have 

reported the synergistic approach effectively combats drug-

resistant strains by enhancing antimicrobial effects and 

improving the efficacy of light-based therapies. 
28,31,114,117,128,133,159,160,192–200

 In PDT, NO can react with ROS 

generated by photosensitizers (e.g., singlet oxygen) to 

produce more reactive and oxidative peroxynitrite (ONOO), 

thereby enhancing the killing effect.
201

 In PTT, NO can 

enhance the photothermal effect, allowing for effective 

bacterial killing at lower temperatures, which can protect 

healthy tissues.
87

 Several studies highlight its effectiveness 

against specific pathogens. MDR Gram-negative bacteria 

and their biofilms have been targeted through platforms that 

integrate single near-infrared laser (NIR)-triggered PTT with 

NO release.
23,28,66,138

 P. aeruginosa infections were 

eradicated using red-light responsive NO donor micelles, 

often in conjunction with PTT utilizing photosensitizers and 

photothermal agents.
188,202

 MRSA biofilms have been shown 

to be susceptible to combined PDT destruction by NO and 

NIR-stimulated NO-releasing nanocages.
200,201,203

 S. aureus 

biofilms were eradicated by nanoplatforms combining NO 

with PDT and low-temperature PTT. An integrated 

phototherapeutic nanoplatform, termed AI-MPDA, was 

developed by Zhang et al. for effective S. aureus biofilm 

eradication. This platform is composed of mesoporous 

polydopamine functionalized with L-arginine on its surface 

and subsequently loaded with indocyanine green (ICG) via π-

π stacking. Upon near-infrared exposure, the AI-MPDA 

generates heat and ROS, initiating a cascade catalytic 

release of NO from the L-Arg (Figure 4B). This system 

leverages NO-enhanced PDT alongside low-temperature 

PTT (PTT, ≤45 °C). In an abscess model, this comprehensive 

phototherapy platform achieved nearly 100% biofilm removal, 

leading to rapid recovery of infected wounds and a significant 

reduction in bacterial colonization.
28

 Hence, synergistic 

PDT/gas/PTT therapy using NO holds significant promise for 

the future treatment of bacterial infections.
87

 This combined 

therapeutic strategy leverages NO's antimicrobial properties 

and the precision of light-activated treatments to overcome 

bacterial resistance, making it a crucial area of research. 

Future investigations should aim to fine-tune NO release 

kinetics and light irradiation parameters to enhance biofilm 

eradication while preserving surrounding tissue integrity.
204,205

 

 

Figure 4. A. Schematic of mechanisms of antibiotic potentiation by 

NO. Adapted with permission from ref.
190

 Copyright 2021. American 

Chemical Society; B. Schematic illustration of an integrated 

phototherapeutic nanoplatform, termed AI-MPDA conjugated with 

indocyanine green dye (ICG) for ROS production and L-Arginine for 

NO release for S. aureus biofilm eradication. Adapted with permission 

from ref.
28

 Copyright 2020. American Chemical Society. 

4. Challenges and Future Prospects 

Despite significant advancements, the clinical translation and 

widespread adoption of NO-based antibacterial therapies still 

face several challenges that require ongoing research and 

innovation 

4.1. Improving Stability and Shelf-Life of NO Delivery 

Systems 

The inherent instability and highly reactive nature of NO, with 

a short half-life of only a few seconds to minutes, pose 

significant challenges for developing practical and storable 

NO delivery systems.
15,61

 NO donors can degrade 

prematurely during storage, handling, or before reaching the 

target site, leading to reduced therapeutic efficacy.
43

 This is 

particularly true for small-molecule NO donors, which are 

prone to spontaneous decay under physiological factors, 

often resulting in quick and uncontrolled release.
43

 NONOate 

compounds are reported to have a half-life of just a few 

minutes at 25°C, making their incorporation into drug delivery 

systems complex.
25

 The hydrophilic nature and lability of the 

S-NO bond in RSNOs also add to the complexity of 

incorporating them into formulations, limiting their use with 

certain delivery systems.
25

 Future research must focus on 

designing more stable NO donor molecules and advanced 

encapsulation strategies to extend the half-life and improve 

the shelf-life of NO-releasing materials. Macromolecular NO 

donors, such as those conjugated to polymeric scaffolds, 

show promise in improving stability, biodistribution, and 
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circulation time.
73

 Novel materials and functionalization 

techniques are needed to protect NO donors from 

degradation under various storage and physiological 

conditions.
206

 

4.2. Strategies for Targeted Delivery to Infection Sites 

Achieving precise and localized delivery of NO to specific 

infection sites is extremely important to maximize therapeutic 

efficacy while reducing potential off-target systemic toxicity.
25

 

NO's short half-life means its effective range from the 

production site is limited to about 100-200 µm, making highly 

targeted and selective delivery essential.
15

 Non-specific NO 

release can lead to reduced efficacy and potential adverse 

effects on healthy host cells and tissues, as high 

concentrations of NO can be cytotoxic.
32

 Traditional NO 

delivery often results in a rapid burst of NO followed by a 

progressive decay, which is not ideal for sustained 

antibacterial action. Research is moving towards developing 

"smart" delivery systems that can respond to specific 

biomarkers or environmental cues prevalent in infected 

tissues, such as changes in pH, redox potential, or the 

presence of bacterial enzymes.
207

 Enzymatic prodrug 

systems where NO production is controlled by specific 

enzymes or substrates can finely tune delivery rates.
208,209

 

4.3. Emerging Approaches: Computational tools and 

Machine Learning in NO-based Therapeutics and 

Delivery Systems 

The integration of advanced computational tools and 

machine learning approaches offers powerful new avenues 

for accelerating the design, optimization, and understanding 

of NO delivery systems.
37

 

4.3.1. Modeling Antimicrobial Mechanisms 

Computational approaches can be used to understand the 

mechanisms underlying the antimicrobial action of NO.
34,35,38 

To comprehensively assess these mechanisms, multiscale 

simulations should be employed, pairing molecular dynamics 

(MD) simulations to capture NO’s molecular-level damage 

with cellular-scale models that reflect its systemic impact on 

microbes. This combined approach would help predict how 

NO and reactive derivatives like peroxynitrite induce 

nitrosative and oxidative stress on bacterial membranes, 

proteins, and DNA. Additionally, computational modeling of 

biofilms is essential: simulations could elucidate how NO 

compromises the extracellular polymeric substance (EPS) 

and disrupts quorum-sensing communication, thereby 

destabilizing biofilm structure and enhancing susceptibility to 

treatment. This includes predicting anti-biofilm activity of 

various molecules and training strain-specific models for 

targeted treatments.
39

 

4.3.2. Designing and Optimizing NO-Releasing Systems 

Computational studies can be used to engineer better NO-

releasing systems. A major challenge is controlling the 

release of NO, which has a very short half-life. Quantitative 

models can predict the rate and duration of NO release from 

different delivery systems, such as nanoparticles or 

hydrogels, helping us adjust their design.
32

 Using 

computational methods like molecular docking and SAR 

modeling allows scientists to forecast how effective and 

specific certain compounds will be against various 

microbes.
42

 Also, machine learning (ML) can be a powerful 

tool.
37

 ML approaches can derive enhanced broad-spectrum 

antimicrobial peptides by relating descriptors to activity.
39

 By 

training ML algorithms on existing data, we can predict the 

properties of new NO donors and rapidly identify the most 

promising compounds for synthesis.
210

 A recent Cell study 

demonstrated the power of AI-driven molecular generation in 

antibiotic discovery by combining fragment-guided and 

unconstrained generative strategies to explore vast chemical 

space. It filtered millions of candidates for synthesizability 

and activity and validated promising leads both in vitro and in 

vivo.
40

 This framework provides a useful guide for applying 

the generative deep learning technique to compounds that 

release NO. Unconstrained generation allows for the 

discovery of new scaffolds, while established NO-donor 

motifs can be used as guiding components. The development 

of structurally distinct NO-based treatments with potentially 

novel mechanisms of action against resistant microbes could 

be accelerated by implementing predictive filters for NO-

release kinetics, antimicrobial activity, and safety, as well as 

by using an iterative cycle of generation, prediction, 

synthesis, and experimental validation. Likewise, the deep 

learning-guided discovery of antibiotic structural classes was 

made possible by a recent study by Wong F. et al., which 

showed that ML models in drug development can be 

explained and offer insights into the chemical substructures 

underlying selective antibiotic activity.
41

 These methodologies 

could be directly applied to research on NO-releasing 

moieties, where a comprehensive collection of compounds 

that produce or release NO, along with the associated 

cellular toxicity profiles and antimicrobial properties, could be 

used to train an AI model (Figure 5). Researchers could 

forecast and create novel compounds with improved 

antibacterial properties by employing explainable AI to help 

the model identify the precise chemical characteristics or 

structural configurations responsible for the most efficient and 

selective NO delivery.  

Furthermore, computational fluid dynamics (CFD) and MD 

can simulate how NO-releasing nanoparticles interact with 

biological fluids and penetrate complex tissues, informing the 

design of systems for targeted delivery to infected sites.
38 

To 

improve NO delivery systems, there is a need to enhance 

their effectiveness and reduce side effects. Computational 

modeling can aid in designing nanoparticles, hydrogels, and 

other drug delivery platforms that ensure controlled and 

targeted release of NO. For example, technologies such as 

NO-releasing porous silicon nanoparticles and polymer-

based systems are promising areas for exploration to 

enhance antimicrobial efficacy.
18,62

 A crucial aspect of 

developing NO-releasing antimicrobials is ensuring their 

safety and biocompatibility. Computational models can 

predict the cytotoxicity and pharmacokinetic profiles of NO 
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donors, assisting in the design of compounds with minimal 

adverse effects on mammalian cells.  

 

Figure 5.  Schematic diagram of how Machine learning can effectively 

provide predictions and model validation for antimicrobial activity 

using a library of NO-releasing compounds as a training set to predict 

novel NO-releasing compounds. 

5. Conclusion and Outlook 

NO stands as a powerful and versatile tool in the ongoing 

battle against antibiotic resistance. Its broad-spectrum 

antibacterial activity, potent anti-biofilm capabilities, and 

multiple mechanisms of action offer a robust alternative to 

conventional antibiotics. Significant advancements in the 

development of sophisticated NO delivery systems, including 

various nanoparticles, polymeric materials, and hydrogels, 

have addressed the challenges of NO's inherent instability, 

enabling controlled, sustained, and targeted release. These 

innovations have opened diverse biomedical applications, 

particularly in combating persistent biofilm infections, 

promoting wound healing, and preventing infections on 

medical devices. 

While challenges remain concerning the long-term stability, 

precise targeted delivery, and clinical translation of NO-based 

therapies, the outlook is highly promising. Emerging 

strategies, such as stimulus-responsive systems and the 

integration of computational and machine learning 

approaches, are poised to revolutionize the design and 

optimization of NO delivery. Continued innovation in material 

science, nanomedicine, and computational biology will be 

crucial for overcoming these hurdles. By facilitating the 

successful clinical translation of NO-based antibacterial 

therapies, we can significantly contribute to a new era of 

antimicrobial drugs, thereby safeguarding global public health 

against the ever-growing threat of drug-resistant pathogens. 
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