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Abstract

Photocatalytic solar fuel production has emerged as a
sustainable route for converting abundant solar energy into storable
chemical fuels. Key processes include water splitting for H,
generation, CO, reduction to value-added hydrocarbons, and N,
fixation to NHs, offering solutions for both energy and industrial
decarbonization. Recent progress in band structure engineering,
heterojunction design, single-atom catalysis, and defect/strain
modulation has improved light harvesting, charge carrier
separation, and catalytic activity. However, challenges remain in
achieving high solar-to-fuel efficiencies, product selectivity, stability,
and scalability under practical conditions. Here, we will discuss
recent advances, existing challenges, and future opportunities in
photocatalytic solar fuel production, with a focus on H, generation,
CO, reduction, and NH; fixation.
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1. Introduction

The escalating global energy crisis and environmental
concerns necessitate the development of sustainable and
clean energy technologies.® The dependence on fossil fuels
has led to significant carbon emissions, driving climate
change and necessitating a shift toward renewable energy
sources.? Among the various renewable options, solar energy
is the most abundant and universally accessible.>** However,
its intermittent nature and the challenge of efficient storage
remain significant hurdles to its widespread adoption.® This
has spurred research into converting solar energy into
storable chemical fuels, a concept known as solar fuel
production.®

Photocatalytic solar fuel production offers a promising route
for this conversion. This process harnesses the power of
light-absorbing  semiconductor = materials, known as
photocatalysts, to drive chemical reactions that store solar
energy in chemical bonds. The key reactions of interest
include: (i) photocatalytic water splitting for H, generation,
which is a clean and high-energy-density fuel;” (i)
photocatalytic reduction of CO, to value-added hydrocarbons
and oxygenates, which not only provides fuels but also
contributes  to  industrial  decarbonization;® and (i)
photocatalytic N, fixation to NHsz, an essential component for
agriculture and a potential hydrogen carrier.’

Significant progress has been made in recent years to
enhance the efficiency and stability of photocatalytic systems.
This includes advanced material design and engineering
strategies aimed at optimizing light absorption, improving
charge carrier separation, and accelerating surface catalytic
reactions.’® For example, strategies such as band structure
engineering, the design of heterojunctions, the use of single-
atom catalysis, and the precise control of defects and strain
have shown remarkable results in improving photocatalytic
performance.™*® However, despite these advancements,

practical application remains challenging due to issues such
as low solar-to-fuel efficiency, poor product selectivity, long-
term instability, and difficulties in scaling up the technology
for industrial use.**

This paper provides a comprehensive review of the recent
developments in photocatalytic solar fuel production. We will
critically discuss the state-of-the-art advancements in key
processes, specifically focusing on H, generation, CO,
reduction, and NH; fixation. Furthermore, we will highlight the
existing challenges and provide insights into future research
directions and opportunities to overcome these limitations,
paving the way for a sustainable energy future.

2. Principles of Photocatalytic Solar Fuels Production
2.1 Fundamentals of Photocatalysis

Photocatalytic solar fuel production is initiated by the
absorption of photons with energy equal to or greater than
the band gap of a semiconductor. Upon photoexcitation,
electrons are promoted from the valence band (VB) to the
conduction band (CB), leaving behind holes in the VB.™
These photogenerated charge carriers migrate to the surface,
where they drive redox reactions: electrons typically reduce
protons or carbon dioxide, while holes oxidize water or
sacrificial agents. Efficient photocatalysis requires not only
strong light absorption but also effective charge separation
and suppression of electron—hole recombination. The overall
process is illustrated schematically in Figure 1, where the
fundamental steps of photon absorption, charge generation,
migration, and surface redox reactions are highlighted.
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Figure 1. Schematic representation of the photocatalytic process
involving photon absorption, charge separation, and surface redox
reactions.

2.2 Thermodynamic and Kinetic Considerations

The feasibility of photocatalytic fuel production depends on
the band edge alignment of the semiconductor relative to the
redox potentials of the target reactions. For overall water
splitting, the CB minimum must be more negative than the
hydrogen evolution potential (0 V vs. NHE at pH 0), while the
VB maximum must be more positive than the oxygen
evolution potential (+1.23 V vs. NHE).***" In carbon dioxide
reduction, the CB must be sufficiently negative to drive multi-
electron processes leading to products such as CO, CH,, or
CHs;OH.”® Beyond thermodynamic requirements, kinetic
barriers-particularly the sluggish four-electron oxygen
evolution reaction-strongly affect overall efficiency.”® Charge
carrier recombination, surface trapping, and side reactions
further reduce the photocatalytic yield.?® Figure 2 depicts a
representative band structure, showing the relationship
between semiconductor band edges and the redox potentials
relevant to water splitting and CO, reduction. Further, the
redox potentials of proton-coupled reactions exhibit a
Nernstian dependence on pH, which is essential for
understanding the thermodynamics of photocatalytic

processes. According to the Nernst equation E = E° —%59 X

pH (at 25 °C), where n is the number of electrons involved,
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Figure 2. Band edge alignment of a semiconductor photocatalyst with
respect to water reduction/oxidation and CO, reduction potentials.
Reproduced with permission from ref 2 Copyright 2020 Elsevier.

2.3 Types of Solar Fuels

A diverse range of solar fuels can be generated
photocatalytically, depending on the chosen reaction
pathway. Hydrogen gas, obtained from water splitting, is the
most studied due to its simplicity and high energy density.
Carbon monoxide can be selectively obtained through a two-
electron CO, reduction pathway, whereas methane and
methanol require multi-electron, proton-coupled transfers that
remain challenging but attractive for their higher energy
content and ease of storage.?* Oxygenates such as ethanol
and formic acid are also being actively investigated as liquid
solar fuels.® In addition to carbon- and hydrogen-based
fuels, photocatalytic nitrogen reduction has emerged as a
potential route for sustainable NH3 production.?® Ammonia is
not only a key industrial chemical but also a carbon-free
energy carrier that can be liquefied and transported with
relative ease. The six-electron transfer required for nitrogen
fixation (N2 + 6H" + 6e™— 2NHs) poses significant challenges,
particularly due to the strong N=N triple bond and the
competing hydrogen evolution reaction.”” Nevertheless,
advances in catalyst design, defect engineering, and co-
catalyst loading have begun to show promise in improving
selectivity and yield for photocatalytic NH; production.?® A
comparative summary of representative materials for
photocatalytic water splitting (Table:1) and CO, conversion
(Table 2), along with their corresponding STF efficiencies
across different material classes, is presented to provide
valuable insight into the performance trends of solar fuel
catalysts.

Table 1: STH efficiencies of various materials for hydrogen
generation via water splitting.

the redox potentials shift linearly with pH?.. For instance, the Material Material STH Referenc
reduction potential of the H*/H, couple decreases from 0 V at classes Name efficiency e
pH 0 to -0.41 V at pH 7, while the oxidation potential of Metal WO,/BiVO,4 nanorods 8.1% 29
0,/H,O changes from +1.23 V to +0.82 V versus NHE. oxides
Although the overall water-splitting potential remains constant SrTiOs 0.035% 30
at 1.23 V, the absolute band positions relative to the solution TiOo/ZnTe/Au 0.98% 31
pgtential vary with pH, significgntly ir.1fI.L.|encing band-edge 2D- MoSez/TiCO; 12% 32
allgnmentz?nd the thermodynamic feasibility of photocatalytic material B-AUTe 007% 3
reactions.
Chalcoge Sb,Se3/CdS/MoS, 3.08% 34
- nides Ga-LTCA/CNTS/BVO 017% 3%
pH =
[ Oxidation photocatalysts sheets
i l Pt/TiO,/CdS/CulnS, 1.82% 36
z-1f Moot oy Organic | MAPDB(I,,Br,)s (x = 0.1) 0.81% 37
> BEEES % 3 =E £ -u H, 041V Halide
»;: (1} wx mw (,,(, " €O, JCH,OH ~0.38V Perovskit
= * f)‘fl/l‘(*,' SN es MAPDBr3.« I /Pt 1.05% 38
s 1: — — —) a= = O Jn 082V
§ | | seel -m’wo l L l Cs3 Bizx Sbyo lg /Pt 0.32% 39
) 2',L’l b l I
3 Reduction photocatalysts
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Table 2: Efficiencies of different materials for CO, conversion to
value-added products.
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Table 3: Band gap, conduction band (CB), and valence band
(VB) edge positions of representative semiconductor
photocatalysts.

Semi- Band Conductio Valence Ref.
conductor Gap n Band (eV | Band
(eV) vs NHE) (eV vs
NHE)
TiO, (anatase) 3.2 -0.25 +2.95 56
gCsN, 27 -1.13 +1.57 57
Cds 24 -0.75 +1.65 58
ZnO 3.2 -0.31 +2.89 59
WO; 26 +0.41 +3.01 60
BiVO, 24 +0.01 +2.41 61
Fe,04 21 +0.30 +2.40 62
ZninyS, 25 -1.12 +1.38 63
SrTiO3 3.2 -0.40 +2.80 64

Material Material CO, CHy, H; Ref.
classes Name Yield (umol g™" h™)
& STH efficiency
Metal TiO2/CsPbBrs 9.02 (CO) 40
oxides CoAl- 320.9 (CO) 41
LDH@Cu,0-60
g-CsN, foam 8.182 (CO) 42
/Cu,0 QDs
2D- Co-PMOF/GR 20.25 (CO) 43

material 1.61(CH,4)

2D covalent 30.62 (HCOOH), 44

organic 23.1 (HCHO),46.67
framework (COF) (CH30H)
Graphene oxide 32.62 (CO) 45
(GO)/ DPP
Chalcogeni ZnIn;S4/g-C3Ny 1425 (CO) 46
des Znln,S,~AIOOH 510.3 (CO) 47
Halide CsPbBr; NCs 4.3 (CO),1.5(CHa), 48
Perovskites 0.1 (Hz)
CsPbBr; NCs/g- 148.9 (CO) 49
Cs Ny
MAPDI3 3.2(C0O) 6.1(CHy) 50
@PCN221(Fe)

3. Photocatalyst Design and Engineering

3.1 Semiconductor Materials and Band Structure Tuning

The design of efficient photocatalysts begins with the
selection of semiconductors possessing appropriate band
gaps and band edge positions. Classical materials such as
TiOz,** Zn0O,* and CdS® have been extensively studied, but
their limitations-such as wide band gaps (TiO,, ZnO) or poor
stability (CdS)-necessitate further innovation.> Strategies to
tailor the band structure include doping with transition metals
or non-metals, alloying, and constructing solid solutions.
These modifications enable extended light absorption into the
visible region and improved charge carrier dynamics.”® A
representative illustration of band gap tuning through doping
and alloying is shown in Figure 3.
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Figure 3. Schematic representation of band structure tuning in
semiconductor photocatalysts through metal ion doping.

A quantitative comparison of the conduction and valence
band edge positions of representative semiconductor
photocatalysts is represented in Table 3.

3.2 Cocatalysts and Heterojunction Strategies

Cocatalysts play a vital role in facilitating surface redox
reactions by lowering activation barriers, suppressing charge
recombination, and enhancing selectivity.”® Noble metals
such as Pt,*® Au,%” and Rh® are well-known for promoting
hydrogen evolution, while transition metal oxides (e.g., CoOx,
NiO,, MnO,) are effective oxygen evolution cocatalysts.*"*
However, cost considerations drive research toward earth-
abundant alternatives.

Another effective strategy is the construction of
heterojunctions, which enable efficient spatial separation of
photogenerated charges. Depending on the relative band
alignment, heterojunctions can be of type-I, type-ll, type-lll,
Z-scheme, or S-scheme configurations.”” Among these, Z-
scheme and S-scheme systems are particularly attractive
because they retain strong redox ability while improving
charge separation.”” Figure 4 summarizes the major
heterojunction architectures employed in photocatalysis.
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Interface Interface
Interface
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p-n Junction

‘wo | W

s |,
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Schottky Junction Z:5cheme Heterojunction

Figure 4. lllustrative band alignment of different types of
heterojunction photocatalysts.

3.3 Surface Modification and Defect Engineering
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Surface properties of photocatalysts critically influence
adsorption, charge transfer, and product selectivity. Defect
engineering, such as the introduction of oxygen vacancies or
sulfur vacancies, can create localized states that trap
electrons, enhance CO, adsorption, or tune the binding
energies of intermediates. Similarly, surface functionalization
with organic linkers or inorganic layers can improve charge
transfer kinetics and stabilize reactive intermediates. For
example, black TiO, with surface disorder has demonstrated
superior visible-light activity compared to pristine TiO,.”*
Figure 5 illustrates how defect states and surface
modifications  contribute to enhanced photocatalytic
performance.
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Figure 5. Schematic showing the role of defects and surface
modification in charge carrier dynamics and adsorption of reactants.

3.4 Nanostructuring for Enhanced Activity

Nanostructuring provides a powerful route to increase the
surface-to-volume ratio, reduce charge migration distances,
and enhance light absorption through scattering and
plasmonic effects.” One-dimensional (nanorods, nanotubes),
two-dimensional  (nanosheets), and three-dimensional
hierarchical architectures have been explored for improved
photocatalytic efficiency. Moreover, plasmonic
nanostructures such as Au or Ag nanoparticles can
concentrate electromagnetic fields, thereby enhancing local
photon absorption and hot electron generation.” As shown in
Figure 6, nanostructured architectures maximize light
harvesting, surface reactions, and charge transport
pathways, making them highly desirable for scalable solar
fuel applications.

W &= 8
&y ol g 4D

Light Trapping
Figure 6. Various nanostructured architectures are employed to
enhance photocatalytic activity. Reproduced with permission from
ref”’. Copyright 2015 Royal Society of Chemistry.
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4. Reactor and System Engineering

4.1 Surface Modification and Defect Engineering

While material development is central to photocatalysis,
system-level engineering determines whether the intrinsic
activity of a catalyst can be effectively translated into scalable
solar fuel production. Photoreactor design influences light
distribution, mass transfer, and product collection.
Conventional slurry reactors offer excellent light—catalyst
contact but face challenges in catalyst recovery. Immobilized
systems, where photocatalysts are deposited on transparent
substrates, overcome separation issues but often suffer from
limited active surface area. Recent developments include
microchannel reactors, photonic crystal reactors, and
membrane-assisted configurations, all of which aim to
optimize photon utilization and product separation. A
schematic overview of representative photocatalytic reactor
designs is shown in Figure 7.

Solar-to-fuels
Photoreactor
_\(Hz, CH,, CH;0H)

Bubbles. Adsorption
Juerdeay 1o aameN Y
Figure 7. Representative reactor configurations for photocatalytic

solar fuel production. Reproduced with permission from ref %
Copyright 2025 Wiley-VCH GmbH.

4.2 Light Harvesting and Utilization Strategies

Efficient solar fuel production requires maximizing the fraction
of solar photons absorbed and effectively utilized. Reactor
geometries are often coupled with optical elements such as
parabolic concentrators, reflective coatings, and light guides
to enhance photon flux. Spectral management strategies,
including plasmonic enhancement and photon upconversion,
are also being investigated to utilize sub-band-gap photons.
Moreover, reactor transparency and scattering effects play
critical roles in ensuring uniform light penetration throughout
the catalyst suspension.”
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4.3 Integration with Renewable Energy Sources

Beyond stand-alone photocatalytic reactors, future
deployment requires integration into broader renewable
energy infrastructures. Hybrid  photoelectrochemical—
photocatalytic systems offer the advantage of combining
efficient charge separation with high surface catalytic activity.
Coupling photocatalysis with photovoltaic or wind energy can
provide additional driving forces for overcoming
thermodynamic or kinetic barriers. Furthermore, modular
reactor units designed for decentralized applications could
allow localized solar fuel production, reduce transport costs,
and improve energy security. A conceptual scheme of
integrated renewable-photocatalytic systems is presented in
Figure 8.
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Figure 8. Conceptual illustration of hybrid systems integrating
photocatalytic reactors with photovoltaic cells for scalable solar fuel
production. Reproduced with permission from ref &, Copyright 2022
Elsevier.

5. Challenges in Photocatalytic Solar Fuels Production

Despite  significant advancements in  photocatalyst
development and system engineering, the practical
implementation of photocatalytic solar fuel production is still
limited by multiple fundamental and engineering barriers.
These challenges span the entire process chain, from light
harvesting and charge separation to product selectivity,
catalyst durability, reactor scale-up, and economic feasibility.
A detailed discussion of these limitations is necessary to
guide future research efforts and prioritize solutions that can
accelerate  the commercialization of  photocatalytic
technologies.

5.1 Low Solar-to-Fuel Conversion Efficiency

The most pressing limitation is the low solar-to-fuel (STF)
conversion efficiency, which remains below 1% under
standard AM 1.5G illumination for most reported systems.
This inefficiency arises from multiple loss pathways. Many
classical semiconductors, such as TiO, and ZnO, have wide
band gaps (>3.0 eV), restricting light absorption to the
ultraviolet region, which constitutes only about 4-5% of the
solar spectrum. Even when visible-light-absorbing materials
are employed, a significant portion of photogenerated
electron—hole pairs recombine either in the bulk or at surface
defect sites before reaching the active sites for redox

Prayogik Rasayan

reactions.®* Furthermore, the kinetics of key reactions such
as the four-electron oxygen evolution reaction (OER) are
inherently sluggish, resulting in large overpotentials and high
activation barriers. These factors collectively contribute to
large energy losses at each step of the process. Figure 9
schematically illustrates the photon energy flow in a typical
photocatalytic system, highlighting the points where losses
occur, including limited spectral absorption, bulk and surface
recombination, and slow surface kinetics.
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Figure 9. Energy loss pathways in photocatalytic solar fuel production
showing bulk and surface recombination.

5.2 Selectivity and Competing Side Reactions

Another critical challenge is achieving high selectivity toward
the desired solar fuel product. In photocatalytic CO,
reduction, multiple parallel reaction pathways are
thermodynamically feasible, leading to a complex mixture of
products including CO, CHs; CHsOH, and HCOOH.*
Competing hydrogen evolution (HER) is particularly
problematic because proton reduction is often kinetically
more facile than CO, activation, resulting in low faradaic
efficiencies for carbon-based products. A similar challenge
exists for photocatalytic nitrogen reduction, where the strong
N=N bond necessitates highly active sites for adsorption and
activation, yet HER frequently outcompetes the desired six-
electron reduction to NHs.** Improving selectivity requires
rational design of catalyst surfaces to preferentially adsorb
and stabilize key intermediates, while destabilizing unwanted
ones. Strategies such as defect engineering, single-atom
catalyst design, and heteroatom doping are promising in
steering selectivity. Figure 10 shows a representative energy
landscape comparing CO, reduction pathways, emphasizing
the difficulty of directing photogenerated electrons toward the
desired products.
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Figure 10. lllustration showing the importance of adsorption site
design for selectivity. Reproduced with permission from ref 8,
Copyright 2022 Wiley-VCH GmbH.

5.2 Stability and Durability of Photocatalysts

Long-term operational stability is a major obstacle for
practical photocatalysis. Many visible-light-active
semiconductors are prone to photocorrosion, structural
degradation, or leaching when exposed to irradiation. For
instance, CdS readily undergoes self-oxidation in the
presence of photogenerated holes, forming soluble Cd**
species and resulting in catalyst deactivation.®® Similarly,
Cu,O suffers from photocorrosion via reduction to metallic
copper or further oxidation to CuO.® Hybrid perovskite
materials, although highly efficient light absorbers, exhibit
poor moisture and thermal stability, which limits their
applicability in real-world environments. Protective coatings,
surface passivation layers, and sacrificial agents can
enhance stability but often at the cost of blocking light
absorption or reducing the number of accessible active sites.
Real sunlight introduces further complexity due to fluctuating
intensity, temperature variations, and the presence of
atmospheric  contaminants, which can  accelerate
degradation.

[ Elaborating
Heterojunction

4

Photo carrosion
Inhibition of
Semiconductor-
Based

Figure 11. Approaches to Suppress Photocorrosion in Semiconductor
Photocatalysts.
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Achieving stable operation over thousands of hours under
natural sunlight is still an unsolved challenge. Figure 11
illustrates the common photocorrosion mechanisms and
strategies used to enhance photocatalyst durability.

Table: 4 Summary of current state-of-the-art photocatalytic
reactor designs and configurations for efficient product
separation and enhanced reaction performance.

Reactor type Key features Product Ref.
separation
approach
Batch slurry | Simple lab | Off-gas analysis 88
photoreactor workhorse; good for | (GC), liquid
screening catalysts | sampling; no
and initial selectivity | continuous
data. separation, prone
to product re-
adsorption, low
scalability.
Continuous- Improved mass | Online GC for 89
flow tubular | transport, steady- | gaseous
reactor state operation, | products; liquid
easier scale-up; | traps for
reduces catalyst | condensable
deactivation vs | species; easier to
batch. integrate
downstream
separation
Fixed-bed gas- | Immobilized catalyst | Direct gas-phase 90
solid on suitable for gas- | product; coupling
photoreactor phase CO, + H,O | with downstream
vapor, good catalyst | adsorbers or
contact with light if | membranes for
thin film. selective
removal.
Photocatalytic Integrates Membrane 91
membrane photocatalysis with | permeation or
reactor (PMR) selective selective removal
membranes of products
simultaneous
conversion +
separation
Gas-solid Designed to | High-purity gas 92
high-purity minimize flow — direct on-
photoreactor background C- | line GC/MS;
contamination and | enables reliable
assure reliable gas- | assignment of
phase carbon source
measurements;
important for
reproducibility.

5.4 Reactor and Process Scale-Up Limitations

The translation of laboratory-scale photocatalysis to pilot or
industrial scale is non-trivial. Most research studies employ
small, well-mixed batch reactors, which do not reflect the
challenges of light distribution, mixing, and mass transfer
encountered at larger scales. In larger systems, photon
penetration becomes non-uniform, with most light absorbed
near the reactor surface, resulting in poor utilization of
catalysts in deeper regions. Slurry reactors, while efficient for
laboratory testing, create additional separation challenges
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when recovering fine catalyst powders after reaction. Thin-
film immobilized systems address this by eliminating
separation steps, but they sacrifice surface area and can
suffer from mass-transfer limitations.*” Furthermore, gas—
liquid mass transfer becomes a bottleneck in CO, and N;
reduction due to their limited solubility in aqueous solutions.
Product concentrations in practical systems are typically low,
requiring energy-intensive separation processes to achieve
usable fuel streams. Table:4 summarized the current state-
of-the-art photocatalytic reactor technologies, emphasizing
their design features, product separation strategies, and
application scopes.

5.5 Techno-Economic Barriers

From a techno-economic perspective, photocatalytic solar
fuel production must compete with fossil fuel-based
processes, which benefit from decades of optimization and
cost reduction. Current projections suggest that STF
efficiencies must reach at least 10% under real sunlight,
coupled with catalyst lifetimes exceeding five years, to
approach cost parity with conventional hydrogen or synthetic
fuel production routes. The reliance on expensive noble-
metal cocatalysts such as platinum, ruthenium, and gold
significantly increases material costs, motivating research
into earth-abundant alternatives. Reactor construction and
maintenance costs, along with energy requirements for
product purification, also contribute substantially to the
levelized cost of solar fuel. Life-cycle assessments
emphasize that the overall carbon footprint must be
significantly lower than fossil-derived fuels for the technology
to deliver true climate benefits, which requires low-energy
synthesis of photocatalysts, recyclable reactor components,
and minimal use of sacrificial agents. Current photocatalytic
systems still show relatively low solar-to-fuel (STF)
efficiencies, typically below 1% for CO, reduction and 1-2%
for overall water splitting, whereas industrial feasibility
requires STF values exceeding 10% for economic
competitiveness . The estimated hydrogen cost from state-
of-the-art particulate photocatalysts (assuming 1% STF, 10 h
day-! solar irradiation, 20-year plant life) is still >$10 kg1 H,,
compared to the Department of Energy (DOE) 2030 target of
$2 kg H,*. Similarly, for CO, to methanol conversion, the
current process energy demand exceeds 3-5 kWh gt
CH3OH, far above the thermodynamic minimum of 1.5 kWh g-
1, highlighting the gap between laboratory performance and
economic viability®®. Additional cost factors include reactor
materials and light-collection systems (=30-40% of total
capital cost), catalyst stability (<100 h typical lifetime), and
separation/purification costs, which account for 20-35% of
total operating expenditure®®.To address this, it is quantified
that even a modest increase of STF from 1% to 5% could
reduce the levelized cost of solar hydrogen or solar methanol
by >60%, underscoring that improvements in quantum
efficiency, light utilization, and reactor photon management
are key economic levers.”’

5.6 Variability of Real-World Operating Conditions

Prayogik Rasayan

Most published studies evaluate photocatalyst performance
under highly controlled laboratory conditions using simulated
AM 1.5G light and ultra-pure reactants. In real-world
scenarios, the intensity and spectral distribution of sunlight
fluctuate throughout the day and season, while temperature
variations can influence charge carrier dynamics and reaction
rates. Feedstocks such as CO, or N, may contain impurities,
including moisture, NOy, or SOy, which can poison active
sites and lead to irreversible deactivation. Therefore, outdoor
pilot-scale  demonstrations under realistic  operating
conditions are critical to validate laboratory performance and
to develop robust photocatalytic systems capable of
maintaining efficiency under intermittent and dynamic solar
input.

5.7 Insufficient Standardization and Benchmarking

Finally, progress in this field is hindered by the absence of
standardized protocols for performance evaluation.
Differences in light intensity calibration, reactor geometry,
catalyst loading, and gas analysis techniqgues make it
challenging to compare reported results across laboratories.
This lack of uniformity leads to widely varying claims of
efficiency and selectivity, complicating the identification of
truly promising materials and systems. Establishing
universally accepted benchmarks for quantum efficiency
measurement, product selectivity reporting, and long-term
stability testing, similar to what has been implemented in the
photovoltaic community, would greatly accelerate progress
and enable fair comparisons of results across studies.

6. Emerging Trends and Future Perspectives

The challenges outlined in Section 5 underscore the urgent
need for disruptive innovations in both material science and
system engineering to realize economically viable
photocatalytic solar fuel production. In recent years, several
promising trends have emerged that aim to address these
bottlenecks. These advances range from the discovery of
new classes of photocatalysts and sophisticated
nanostructuring approaches to the integration of artificial
intelligence (Al) for materials discovery, hybridization with
other renewable energy systems, and policy-driven
roadmaps for global deployment.

6.1 Techno-Economic Barriers

The search for highly efficient, stable, and earth-abundant
photocatalysts continues to be the cornerstone of this field.
Two-dimensional (2D) materials such as graphitic carbon
nitride (g-CsN,), transition metal dichalcogenides (MoS.,
WS,), and layered double hydroxides (LDHs) have attracted
immense attention due to their tunable band structures, large
specific surface areas, and excellent charge transport
properties. Similarly, metal-organic frameworks (MOFs) and
covalent organic frameworks (COFs) offer unprecedented
opportunities for molecular-level control of light absorption
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and catalytic site distribution, allowing for highly selective
solar-to-chemical conversion. Defect engineering and doping
strategies are increasingly used to introduce mid-gap states,
extend visible-light absorption, and modulate surface
adsorption  properties. Perovskite-based photocatalysts,
including halide perovskites and oxide perovskites, are also
emerging as promising candidates due to their exceptional
optoelectronic  properties, although stability remains a
concern.

6.2 Interface and Charge Engineering

Efficient separation and transfer of photogenerated charge
carriers are crucial for achieving high quantum efficiencies.
Heterojunction construction remains one of the most effective
approaches, where type-ll, Z-scheme, or S-scheme
architectures are employed to spatially separate electrons
and holes and retain sufficient redox potential for driving
multielectron reactions. The development of Schottky
junctions with plasmonic metals such as Au, Ag, or Cu can
also improve charge separation by creating local electric
fields and hot electron injection. Core—shell nanostructures,
where the shell provides passivation and the core acts as the
light absorber, are being widely studied for enhancing both
stability and activity. Additionally, atomic-level control over
surface terminations, step edges, and defect sites is enabling
site-specific catalysis, where reaction intermediates are
stabilized to favor the desired pathway.

6.3 Photothermal and Hybrid Systems

Hybrid approaches that couple photocatalysis with
photothermal effects or external bias sources have gained
traction as a way to overcome kinetic barriers. In
photothermal-assisted systems, light not only drives charge
generation but also locally heats the catalyst surface,
enhancing reaction kinetics, mass transfer, and reactant
adsorption.  Photoelectrochemical ~ (PEC)—photocatalytic
hybrid systems combine the advantages of semiconductor
photoanodes or photocathodes with particulate catalysts,
enabling better charge separation and higher product yields.
Similarly, coupling with renewable electricity sources such as
photovoltaic cells can provide additional driving force to
achieve higher selectivity, particularly for demanding
reactions like CO,-to-CH, or N,-to-NH; conversion.

6.4 Atrtificial Intelligence and High-Throughput Screening

The vast compositional space of potential photocatalyst
materials makes conventional trial-and-error synthesis
inefficient. Machine learning (ML) and artificial intelligence
(Al) approaches are emerging as powerful tools for
accelerating materials discovery by predicting band gaps,
adsorption  energies, and surface reactivity from
computational datasets. High-throughput computational
screening, guided by density functional theory (DFT)
calculations, allows rapid identification of promising
candidates before experimental validation. Coupled with
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automated synthesis and robotic testing platforms, Al-driven
workflows are expected to drastically reduce the time
required to discover new materials with optimal activity,
stability, and selectivity. A strong synergy between Al-guided
predictions and experimental validation is therefore essential
to ensure the reliability and transferability of computational
models. Although the policy and planning perspectives
discussed here are primarily global in scope, similar strategic
initiatives are also relevant within the Indian research
framework to foster Al-integrated materials innovation.

6.5 Techno-Economic Optimization and Policy Roadmaps

Future commercialization of photocatalytic solar fuels will
depend not only on scientific breakthroughs but also on
techno-economic  feasibility = and  supportive  policy
frameworks. Recent studies emphasize the need for an
integrated system design that minimizes capital cost, reduces
downstream separation energy, and utilizes earth-abundant
materials. Pilot-scale demonstrations under real sunlight are
being increasingly pursued to validate performance and
gather reliability data. In parallel, government-led initiatives,
carbon pricing mechanisms, and subsidies for green
hydrogen and synthetic fuels are expected to create
favorable market conditions. International collaborations,
such as the Mission Innovation Challenge on Renewable and
Clean Hydrogen, are actively supporting research on artificial
photosynthesis and solar fuels.

7. Conclusions
7.1 Summary of Key Developments

Over the past decade, the field of photocatalytic solar fuel
production has experienced significant breakthroughs in both
materials  development and system  engineering.
Semiconductors with visible-light response, such as g-C3Na,
BiVO,, and perovskite oxides, have expanded the absorption
window beyond the UV range, increasing solar spectrum
utilization. Cocatalyst loading strategies and heterojunction
formation have dramatically improved charge separation
efficiency, suppressing recombination and enhancing
quantum yields. At the reactor level, novel designs such as
microchannel reactors, immobilized thin-film systems, and
membrane-assisted configurations have been developed to
optimize light harvesting and product collection. These efforts
collectively demonstrate that it is technically feasible to use
sunlight to drive water splitting, CO, reduction, and even
nitrogen fixation under mild conditions.

7.2 Research Priorities and Knowledge Gaps

Despite these achievements, multiple challenges remain
unresolved. STF conversion efficiencies under standard solar
illumination are still below the 10% benchmark considered
necessary for economic viability. Photocatalyst selectivity
remains a bottleneck, especially for CO, reduction, where
competitive HER consumes most of the photogenerated
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electrons, and for N, reduction, where low ammonia yields
limit practical relevance. Long-term stability remains a major
concern, as many visible-light-active catalysts undergo
photocorrosion, phase transformation, or leaching during
prolonged operation. On the system side, reactor scale-up
faces light penetration heterogeneity, —mass-transfer
limitations, and energy-intensive product separation.
Knowledge gaps persist in understanding the mechanistic
details of charge transfer at complex interfaces, the role of
surface defects in determining product selectivity, and the
true degradation pathways of photocatalysts under real-world
conditions. There is also a lack of standardized testing
protocols for activity, selectivity, and stability, which
complicates cross-laboratory comparison and slows down the
identification of truly promising systems.

7.3 Future Roadmap

To bridge these gaps, future research must focus on several
key directions. The development of robust, earth-abundant
photocatalysts capable of long-term operation in natural
sunlight is essential. Interface engineering through Z-scheme
and S-scheme heterostructures should be further optimized
to balance charge separation efficiency with redox potential
retention. Emerging tools such as Al-driven high-throughput
computational screening and automated synthesis platforms
should be leveraged to accelerate the discovery of new
material combinations. Reactor engineering must prioritize
scalable photoreactor designs that maximize photon capture,
ensure uniform catalyst illumination, and minimize
downstream separation costs. Pilot-scale demonstrations and
outdoor testing under fluctuating sunlight are crucial for
generating reliable performance data. In parallel, establishing
internationally accepted benchmarking protocols for STF
efficiency, faradaic selectivity, and stability will create a
common standard for evaluating progress. In addition to
conventional oxide-based systems, future outlooks should
place greater emphasis on non-oxide semiconductors such
as sulfides, selenides, and phosphides, which offer narrower
band gaps and broader visible-light absorption. Similarly,
metal-organic frameworks (MOFs) and covalent organic
frameworks (COFs) represent highly tunable platforms with
well-defined porosity, large surface area, and adjustable
electronic structures, making them attractive for both water
splitting and CO: reduction. Integrating these framework
materials with conventional semiconductors or cocatalysts
can further enhance charge transport, stability, and catalytic
selectivity. Exploring such emerging non-oxide and hybrid
systems will be crucial to push the boundaries of solar-to-fuel
conversion efficiency. Finally, policy measures, carbon
pricing frameworks, and public—private partnerships will play
a decisive role in creating a viable market for solar fuels,
incentivizing  investment and enabling large-scale
deployment.
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