Weak Interactions in Carbon-Hetero Atom Bond Forming Reactions

Anima Bose* and Prasenjit Mal*

*Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha
School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhipurm-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.

Received: March 31, 2021 | Accepted: September 30, 2021 | Published online: October 11, 2021

Abstract

Controlling various reactions by multiple weak interactions or soft forces has become an widespread topic under supramolecular catalysis. This review has made a literature collection that explores cooperative weak or noncovalent interactions. These are charge transfer complexation, H-bonding, S-H…π, acid-base, cation-π, etc., towards C-hetero bond formation reactions. This review article will discuss the specific reactivity of chemical systems controlled by weak interactions.

Keywords: C-N bond formation; C-S Bond formation; Metal-free; Soft forces; Weak Interactions

1. Introduction

The development of the system chemistry approach on small molecules has become popular research topics that help to understand chemical reactions’ complexity. Numerous chemical reactions are controlled by the proper use of noncovalent or weak interactions. The soft forces like charge transfer complexation, H-bonding, S-H…π, acid-base, cation-π, play a significant role in understanding the chemistry of life. The development of new materials with suitable functionality is achievable by choosing appropriate supramolecular interactions or a system chemistry approach. The systems chemistry approach delivers fundamental understandings into the self-assembly and self-sorting principles of molecular systems to design newer functional molecules. Thus, it becomes a popular approach in building complex molecules with high-purity from mixtures of starting components by fewer reaction steps. On the other hand, the accomplishment of system chemistry of small molecules in organic synthesis is less explored.

Nitrogen and sulfur are essential elements of living systems. The nitrogen and sulfur-containing organic compounds are abundant in numerous non-natural and natural products, agrochemicals, pharmaceuticals, pesticides, medicines, and materials. Many sulfur-containing drugs are used regularly in day-to-day practice (Scheme 1).

Amongst the many known carbon-nitrogen (C-N) and carbon-sulfur (C-S) bond formation reactions, cross-coupling reactions via transition-metal catalysis are the most convenient. However, these methods are often associated with several shortcomings like post-reaction contamination of harmful heavy metals, high catalyst loading, etc. Therefore, various sustainable strategies, including photocatalysis, metal-free transformations, etc., have been documented in the literature. In this review article synthesis of C-N and C-S bonds has been discussed with particular importance to weak interactions and supramolecular catalysis.

Scheme 1. Selected examples of a) C-S and b) C-N bond containing drugs.
2. Review

2.1 Hydrogen Bonding (H-bonding) as Reaction Controller

TEC by S-H–π H-bonding. S-H–π interaction or S-H–π H-bonding is one of the latest additions to the family of noncovalent interactions used to control various chemical reactions. However, organic synthetic research areas using S-H–π interaction still in their infancy. Mal and coworkers successfully demonstrated the selective synthesis of anti-Markovnikov or Markovnikov selective Thiol Eene Click (TEC) products (Scheme 2). The anti-Markovnikov selective thioethers were obtained from neat mixing of styrenes and thiophenols at 35-40 °C (Scheme 2b). Conversely, when silver triflate was used as an additive, the reaction was switched entirely to the Markovnikov-selective products. Authors proposed that silver(I), prompted cation-π and thiophilic interactions cooperatively dominated over S-H–π H-bonding to obtain the Markovnikov-selective products (Scheme 2a).

TYC via S-H...π H-Bonding. The Thiol-Yne-Click (TYC) or alkyne hydrothiolation reaction is one of the most encouraging C-S bond-forming reactions practiced in synthesis. Mal and coworkers extended their methodology using S-H...π H-bonding interactions to establish TYC reaction between phenyl acetylenes and thiophenols with exclusive anti-Markovnikov selectivity. The hydrothiolated products were selectively synthesized under catalyst, additives, and solvents-free conditions (Scheme 3a). They have shown that S-H...π H-bonding and the π-π stacking among the aromatic rings helped to control the reaction. They had also established the concept of self-sorting when the components like phenylacetylene, styrene, and thiophenol reacted in one pot (Scheme 3b). The ethynyl (triple bond)-H and S bond were isolated as combination of (Z) and (E) isomers. Therefore, the TYC reaction is one of the most encouraging C-S bond-forming reactions practiced in synthesis.

TYC Reaction via Amide Hydrogen Bond Control. Mal and coworkers overcame the stereoselective issues on the alkynyl hydrothiolation reactions of internal alkynes. The oxygen atom in enolizable carboxyls of 7 makes amide nitrogen non-basic. Therefore, the amide N-H hydrogens do not prefer to form any H-bonding. The diphenyl acetylene 9 (internal alkyne) was reported to be unreactive with thiophenols upon neat mixing (Scheme 4a). However, incorporating an amide functionality next to the alkyne group activated the alkyne and made the N-H hydrogen available for hydrogen bonding. The compound N,N-diphenylpropiolamide 8, was activated by the amide hydrogen, acting as a directing group. The anti-Markovnikov (Z)-selective products were obtained exclusively from internal alkynes and thiophenols (Scheme 4b). Probably, N-H...S hydrogen bonding amongst N-H and S- of thiophenol could regulate the regioselectivity. However, the (Z)-selectivity was conserved because of the C-H...O and N-H...S hydrogen bonding interactions. On the other hand, switching of selectivity from anti-Markovnikov to Markovnikov vinyl sulfide was observed with ortho-amino thiophenol. Here, the Markovnikov product was observed due to the higher preference of N-H...N between –NH2 and S-H over N-H...S hydrogen bonding (Scheme 4c). Overall, the reactions were performed under solvents and additive-free conditions to obtain the selective products of choices within a system.
2.2 Intramolecular Amine-Iodine Reaction Control

Mal and coworkers reported an explosion of \(\Lambda \) iodine reagent IBX\(^{48} \) with aniline derivatives like \(p \)-toluidine and \(p \)-anisidine, when directly mixed under solvent-free conditions. Nevertheless, no reaction was observed amongst IBX and benzamide. They wisely designed compound 19 with an amide group \textit{ortho} to the \(-\text{NH}_2\) group that possibly controlled the reaction. The reaction amongst 2-aminobenzamide 19 and aryl aldehydes 20 was successfully performed under solvent-free ball-milling conditions using the IBX to obtain the quinazolin-4(3H)-ones 21 (Scheme 6).\(^{49} \) The methodology was highly efficient with a wide substrate scope.

Scheme 5. Mal’s approach for \(\beta \)-hydroxy sulfonylation using \(\text{BuO}L\) as radical initiator.\(^{8} \)

Mal and coworkers also showed the preparation of \(\beta \)-hydroxy sulfides 13 by using styrene derivatives 2 and thiophenols 1 in ethanol solvent using \(\text{BuO}L\) as a radical initiator\(^{7} \) (Scheme 5).\(^{8} \) Both \(\text{BuO}L\) and molecular oxygen acted as the promoter for the formation of thyl radical. The catalyst \(\text{BuO}L\) could bind with \(-\text{SH}\) of thiophenol via the complex 14 in EtoH, to generate the thyl radical. Next, the thyl-radicals attacked the styrene to offer stable benzyl-radical intermediate 16. Then aerial dioxygen insertion on 16 might have produced the radicals 17 or 18, responsible for forming \(\beta \)-hydroxy sulfides 13.

Scheme 6. Taming the reactivity iodine(V) reagent IBX with the amines.\(^{49} \)

Mal and coworkers showed an organocatalytic method of controlling a very exothermic reaction of polyvalent iodine reagents with primary amines.\(^{50} \) An \textit{ortho} tertiary amine group of aniline 22 helped to control the amine basicity towards acidic iodine reagents. The acidic methylene protons were the reaction controller for the acid-base amine-iodine reactions. The successful synthesis of benzimidazoles 23 are shown in the Scheme 7. They demonstrated a dehydrogenative acidic C(sp\(^{3}\))-H functionalization in a C-H imination reaction via \([4\text{H}] \) elimination. The organocatalytic condition was accomplished using PhI (iodobenzene, 10 mol \%)-\text{mCPBA}\(^{51} \) at room temperature conditions which generates the Iodine(III) reagent \textit{in situ}.
2.3 Iodine(III) Reagents in Aromatic C-H Sulfenylation Reaction

Mal and coworkers described a dehydrogenative arylation method from the combination of arenes 24 and thiophenols (1) via sulfenium ion intermediate. Electrophile sulfenium ions were generated in situ from thiols with hypervalent iodine reagent PIDA or PhI(OAc)₂ as the sole oxidant in hexafluoroisopropanol (HFIP) and successively used for aromatic electrophilic substitution (EArS) with arenes to synthesized the C-S coupled products 25 (Scheme 8).

Scheme 8. Dehydrogenating C-S coupling using iodine(III) reagent PIDA.

2.4. Hard-Soft Acid-Base (HSAB) Control

Mal and coworkers reported the N-arylation of sulfonanilides by implementing the HSAB (hard-soft acid-base) principle. Nitrenium ions are soft, and carbenium ions are hard electrophiles in nature. Similarly, they considered the alkyl or alkoxy substituted arenes as hard and extended π-conjugated systems as soft nucleophiles. Due to soft-soft preference, biphenyl or diphenylacetylene led to the EArS through nitrenium ion. The authors validated the HSAB principle with bimesityl to isolate the product 30. They described the intermolecular C-N bond formation by in situ generations of hypervalent iodine(III) reagent from PhI-mCPBA (Scheme 9).

Scheme 9. Mal’s approach on N-selective arylation.

2.5. Reaction Control by External Influences

No explosion was reported when contact-explosive iodine(III) reagent PIDA and primary amine were grinded together under solvent-free mechanochemical conditions. The reaction produced CDC (cross dehydrogenative coupling) products from amines and aldehydes. The reaction controller was the acid salt NaHSO₄ (sodium bisulfate). Thus, highly exothermic amine-iodine(III) reaction control was demonstrated by choosing suitable additives. The acid-salt NaHSO₄ helped to control basic amine’s reactivity to obtain CDC products 32 (Scheme 10).

Scheme 10. The acid-salt NaHSO₄ in an explosion-free CDC form iodine(III) reagents and amines with aryl aldehydes.
3. Conclusions

In conclusion, herein, we have collected the literature to prescribe many efficient pathways to make desirable functional molecules using weak cooperative interactions. We hope this review will be a unique addition to supramolecular catalysis. Also, the research area of C-S and C-N bond constructions using weak interactions will be an important contribution in chemistry by bridging areas like supramolecular catalysis and heterocycle synthesis. So, reactions of several unactivated or inert reaction systems will be performed easily at ambient conditions by choosing suitable substrates.

4. Acknowledgements

We thank CSIR for funding (project no. 02/0338/18/EMR-II)

5. Notes and References

DOI: 10.53023/prasayan-20210930
6. About the author(s)

Anima Bose was born in 1989 in Odisha, India. She obtained her M.Sc. degree in 2011 from Utkal University (India). In 2014, she moved to the National Institute of Science Education and Research (NISER), Bhubaneswar, India to start her doctoral studies under Prof. Prasenjit Mal on ‘Peroxide promoted C-X (X = -O, -N) bond synthesis’. She obtained her PhD degree in 2019, and currently, she is working as a visiting faculty at Ravenshaw University, Odisha, India. Her research interest includes metal-free sustainable organic synthesis, hypervalent iodine chemistry, mechanochemistry, and organocatalysis.

Prasenjit Mal was born at Lokhesole, Bankura, West Bengal, India. He obtained his MSc degree from the Indian Institute of Technology Kharagpur and a PhD at the Indian Institute of Technology Kanpur in 2005. Then he undertook postdoctoral studies at the University of Siegen in Germany as Alexander von Humboldt Fellow (2006-2007) and at the University of Cambridge in the UK as Marie Curie Fellow (2008-2009). He started an independent research career at NISER Bhubaneswar in December 2009. His research is focused on supramolecular catalysis in organic chemistry.

Article Note: A collection of invited papers based on Award Lecture presentations in the webinar entitled Science Beyond Boundary: Invention, Discovery, Innovation and Society “Rasayan 7” held online on February 20, 2021.