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Abstract 
Among carbon nanomaterials family, small sized carbon 

dots (CDs) have received considerable research interest because 

of their interesting properties including tunable fluorescence, 

strong emission, easy surface modification, wider availability of 

carbon precursors, chemical stability, low photobleaching, etc. 

Moreover these dots are potential competitor compared to 

conventionally used semiconductor quantum dots. These 

remarkable properties allow the CDs to use in sensing, 

bioimaging, drug delivery, catalytic, and light emitting diode 

applications. Therefore the synthesis of tunable fluorescent CDs 

remains a crucial factor and challenging issue. In this minireview, 

we have explained two synthetic methods namely top-down and 

bottom-up approaches for synthesis of CDs. Different techniques 

under these two approaches have been well explained. 
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1. Introduction 

 
The zero-dimensional carbon dots (CDs) have paved 

their own milestone in various fields like chemo- and 

biosensing, cellular imaging, theranostics and photonics due 

to its unique optical, electrical and surface properties.
1
  The 

CDs are typical luminescent with nano spherical shaped 

structure and mainly consist of carbon as major element. As 

these dots exhibit spontaneous luminescence property with 

excellent biocompatibility, photo stability and non-toxicity, it 

involves as inevitable participant in cell imaging as well as in 

sensing.
2,
 

3, 4, 5
 The CDs have the potentiality in biomedical 

field for cancer cell imaging with active drug delivery. 

Moreover, the inclusion of different surface functional 

moieties on the CDs surface plays the selective receptor-

acceptor activity to execute the chemo-gene and antibiotic 

therapy. The green synthetic methods imply their safety and 

eco-friendly nature. Besides low-photobleaching power and 

light to heat generation efficiency help CDs for cancer cells 

treatment.
6,7

 Quasi spherical nanodots has facilitated with 

quantum confinement, as they are size manipulated under 10 

nm to mold the properties of CDs.
8,9 

CDs consist of sp
2 

hybridized graphitic core and these cores are decorated by 

different functional groups that help to
 
tune the fluorescent 

property through surface modification and fluorescence.
10,11

 

Carbonization temperature plays a major role to tune the 

fluorescent property (temperature-dependent fluorescent).
12

 

Although band gap tunes fluorescence property based on 

size manipulation to capture the excited light and resulting in 

alteration of fluorescence properties. Strong fluorescence 

emission after the absorption of particular energy made them 

to use as the sensitizers in solar cell. That means CDs are 

able to absorb the excited light to impart the electron 

transference. The property of electronic transition depends 

on nature of emission property. Blue emissive CDs have 

higher energy band gap compared to red emissive CDs that 

results in different electronic transition properties. Thus, the 

synthesis of fluorescent CDs from carbonaceous precursors 

is a considerable subject. The synthetic methods are broadly 

classified under the category of top-down and bottom-up 

approaches. One of the fascinating peculiarities of CDs is 

that they can be synthesized through economic as well as 

environment friendly and green synthetic methods. Surface 

passivation can play a vital role for fluorescence 

improvement. Moreover, the emission color can be tuned by 

doping hetero elements such as oxygen, nitrogen, sulphur, 

phosphorous, etc. which can control the electronic transition.  

Emission spectra of different emissive CDs (blue to red) 

under different excitation wavelengths has been shown in 

Figure 1a that displays their respective maximum emission 

wavelengths. Fluorescence digital images of CDs have been 

captured under hand held UV lamp. Figure 1b represents the 
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different emissive CDs which correlate with their emission 

spectra. In this mini review, we have explained different 

synthetic strategies for the CDs preparation. 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1. (a) Normalized emission spectra and (b) digital 

fluorescence images of different CDs. 

 
 

2. Synthesis of CDs 

Synthesis of CDs are classified into two categories 

namely bottom-up and top-down approach. The bottom-up 

approach concerns the synthesis of CDs from small 

molecules via hydrothermal/ solvothermal method, 

combustion method and microwave-assisted method. 

Whereas, top-down approach comprises mainly arc-

discharge, laser ablation, and electrochemical oxidation 

processes that involve breaking down of bulk materials into 

small sized CDs. A schematic presentation has been shown 

in Figure 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. General synthetic approaches of CDs. 
 
 

 

2.1. Bottom-up approach 

As the name suggests, the synthesis procedure involves 

sizing up the molecular level precursors to nanometer level 

particles to exhibit exceptional optical, electrical and 

magnetic properties. The piling up of the molecules to 

nanometer size is not that much easy. It must requires a 

large amount of external energy sources like thermal, sound 

or microwave.
13

 As the chemicals used are at the molecular 

level, it is more flexible to the endless tuning of CDs with the 

aforementioned properties. There are mainly four steps 

involved in the CDs formation during the synthetic time 

namely condensation, polymerization, carbonization, and 

passivation. The small molecules come closer and condense 

to form chain compounds as intermediate in the 

condensation process. The compounds become polymerized 

with the progression in time to form polymeric CDs in the 

second step. The functional groups attach on the polymeric 

CDs surface in this step to impart fluorescence property. In 

the carbonization technique, crystalline graphitic core with sp
2
 

hybridization are formed from polymeric CDs. The remaining 

precursor molecules act as surface passivation to enhance 

fluorescence property of the CDs.  

 

2.1.1. Hydrothermal/ solvothermal method 

The most common and cost-effective method for the 

synthesis of CDs is hydrothermal method. It involves the 

polymerization followed by carbonization of carbon 

precursors on assistance with appropriate solvent, in which 

the carbon precursors completely dissolves. Generally, the 

precursors and solvent mixture is fetched into a teflon-lined 

autoclave and heated in an oven at desired temperature for 

particular time duration. The temperature and carbonization 

duration been chose based on optimum fluorescent CDs 

generation. High amount of thermal energy needed for the 

carbonization as well as for passivation processes. Various 

types of fluorescent CDs can be synthesized from wide range 

of carbon precursors including glucose, sucrose, amino 

acids, citric acid, biowastes, etc. Hu et al. synthesized blue 

fluorescent CDs having fluorescence quantum yield (QY) of 

22% from a mixture of citric acid and L-histidine using 

hydrothermal method.
14

 Han et al. prepared blue fluorescent 

nitrogen doped CDs from biomass using highland barley as 

carbon precursor and ethylenediamine as nitrogen source for 

surface passivation.
15

 Mercury ion (Hg
2+

) has been selectively 

detected with this type of CDs. Nitrogen doped blue emissive 

CDs have been also prepared from cellulose and 

ethylenediamine mixture.
16

 Ferric ion (Fe
3+

) has been 

detected through fluorescence quenching technique. 

Hydrothermal technique has been used to prepare bright blue 

fluorescent CDs from mandelic acid and ethylenediamine 

mixture by Zhang et al.
17

 The CDs showed QY of 41.4% and 

have been used for picric acid detection. A mixture of citric 

and glycine was used for blue fluorescent CDs preparation.
18

 

Khan et al. reported temperature assisted one-step synthesis 

of water soluble nitrogen and sulphur co-doped CDs with 

blue fluorescence from a mixture of L-lysine and thiourea.
19

 

Tan et al. synthesized blue emissive CDs with a fluorescence 

QY of  48.3% using citric acid and poly (ethylenimine) 

mixture.
20

 Phenylenediamine isomers were separately heated 

in ethanol solution to prepare blue, green, and red emissive 

CDs with respective QY of 4.8%, 10.4%, and 20.6%.
21

 The 

authors applied these CDs in bioimaging and flexible full-

color emissive PVA films. One step solvothermal technique 

has been reported for red fluorescent CDs synthesis from 

1,2,4,5-benzenetetramine tetrahydrochloride dissolved in 

ethanol solvent.
22

 The QY value was reported as 30.2% and 

methylene blue has been detected via fluorescence 

quenching strategy. Yellow fluorescent CDs with QY of 

78.6% were solvothermally synthesized from sodium citrate, 

carbamide, and anhydrous calcium chloride in toluene.
23
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Blue-green-yellow fluorescent CDs were prepared in reverse 

micelle system by Prikhozhdenko et al.
24

 Hexane was used 

as non-polar oil phase, nonionic polyoxyethylene lauryl ether 

as a surfactant, and either water or dextran sulfate aqueous 

solution was used as polar phase. The major advantages of 

hydrothermal method over others are the production of 

stable, well composed CDs with minimal loss of precursors. 

This method encourages the synthesis of hydrophilic CDs 

other than hydrophobic CDs. That is the CDs produced 

through hydrothermal method usually dissolve in polar 

solvents and impart good biocompatibity. 

 
2.1.2. Combustion method 

Simple heating under benign conditions also favours the 

synthesis of CDs. It involves the combustion of candle soot 

under favourable condition to get illuminating CDs.
25

 Blue 

emissive CDs were synthesized from candle soot in the 

presence of HNO3 and the CDs has been purified with PAGE 

(polyacrylamide gel electrophoresis).
26

 Chen et al. 

successfully synthesized photobleaching resistive and green 

fluorescent B, N-doped CDs through normal combustion of 

aminophenyl boronic acid (APBA) as the starting material.
27

 

The resulting CDs have been used for the detection of Cu
2+

 

ions via static fluorescence quenching. Soots from candle, 

paraffin oil, corn stalk, natural gas were oxidized by HNO3 to 

synthesize CDs by scientists.
28,29,30,31

  Although, this method 

is cost-effective, but low fluorescent QY CDs synthesis limits 

their wide usage.  

 

2.1.3. Microwave-assisted method 

Usage of higher energy for the synthesis of CDs is 

highly essential to bring up all the small molecules to 

accumulate together. Microwave technique can meet the 

criteria in the synthesis procedure of CDs because of its 

higher energy and used to prepare hydrophilic, hydrophobic 

or even amphiphilic CDs.
32

  Yang et al. have synthesized 

blue fluorescent CDs through microwave pyrolysis from 

green natural material “kelp” as the main carbon source as 

well as ethylenediamine as the nitrogen dopant.
33

 The 

resulting CDs have been applied for colorimetric detection of 

Co
2+

 ions. High fluorescent CDs with QY of 49.9% have been 

reported from succinic acid and tris(2-aminoethyl)amine as 

an “A2 /B3” monomer and the CDs displayed its high 

efficiency in cellular imaging. In et al. focused on the harsh 

synthesis method (pyrolysis using microwave) self-assembly 

followed carbonization to produce CDs from succinic acid 

and tris (2-aminoethyl)amine as an “A2 + B3” monomer set.
34

 

Green emissive CDs were synthesized from phthalic acid and 

triethylenediamine hexahydrate mixture in a very short time 

(60 s) by Wang et al.
35

 Roasted chickpea was used for 

microwave-assisted synthesis of blue fluorescent CDs which 

was used for Fe
3+

 detection.
36

 Fluorescent N-doped CDs 

were synthesized from microwave heating of L-ascorbic acid 

and β-alanine mixture.
37

 The CDs were used in MDCK and 

HeLa cells bio-imaging application. So that it is very clear that 

microwave-assisted CDs synthesis is possible for both 

inorganic and green precursors.  

 

 

 

2.2. Top-down approach 

This approach involves the break down or cleavage of large 

carbon materials into small-sized CDs. The formation 

mechanism builds upon the disintegration of the bond 

between carbon atoms.
38

 The most commonly used method 

for this approach includes mainly arc discharge, laser 

ablation and electrochemical oxidation.
39

 This method 

generally possesses sp
2
 hybridized carbon structures and 

they do not exhibit bright fluorescence properties. Surface 

modification is used to increase the luminescent property.
40,

 
41

 Since this method involves the breaking down of the 

substances to the nanometer level, the process needs high 

energy to impart the breaking/ exfoliation. Generally carbon 

nanotube, graphene sheet, carbon fiber, etc. are used as 

starting materials. Some of the synthetic methods are 

explained in the following.  

 
2.2.1. Arc discharge method 

This method involves cutting down of bulk carbon 

materials to small carbon particles under gas plasma 

enclosed in the sealed container. The plasma generates high 

electric current which helps to maintain a high temperature 

inside the reactor. Decomposition of bulk carbon materials 

takes place at anode and the deposition of small carbon 

particles takes place in cathode. Scrivens et al. prepared 

single walled carbon nanotube by arc discharge method.
42

 

During purification by gel electrophoresis, fluorescent CDs 

were obtained as side product. Substitution of hetero atoms 

in graphene alters its band gap which has well explained by 

Rao et al. on their study of synthesis of blue fluorescent CDs 

under two different atmosphere.
43

 Where the boron doped 

graphene quantum dot (B-GQDs) prepared under the 

atmosphere of H2 + He + B2H6 as the gas phase of arc-

discharge. Whereas the nitrogen doped graphene carbon 

quantum dot (N-GQDs) prepared with the mixture containing 

H2 + He + NH3. During this synthesis, most of the carbon 

atoms replaced with the heteroatoms provided like boron and 

nitrogen. The N- carbon quantum dot had slightly blue shift 

compared to B-CQDs because of the changes in the band 

gap. Su et al has performed an interesting study on the 

impurities formed during the arc discharge of single walled 

carbon nanotube and they successively did the chemical 

oxidation of such carbon by products to obtain fluorescent 

graphitic CDs with higher fluorescent upconversion under 

long wavelength irradiation.
44

 They synthesized narrow 

distribution of graphitic CDs by controlling particle size 

through centrifugation followed by reflux with strong acid. 

Although, the fluorescence depends on the different energy 

level of the surface states which has been achieved by 

surface passivation. The obtained graphitic CDs contained 

significant amount of -OH groups on its surface to give 

upconversion fluorescence on irradiation at 550 nm to 900 

nm.  Downconversion spectra were also observed from these 

CDs.  Mustelin et al. synthesized blue to yellow-green 

emissive CDs during arc oxidation of single walled carbon 

nanotube were oxidized by nitric acid.
45

 Poursalehi et al. 

synthesized CDs through arc discharge among two high-
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purity graphite electrodes in distilled water for a duration of 2-

4 sec.
46

 The authors coupled TiO2 with CDs which exhibit 

lower band gap of about 2.41 eV which helps the visible 

active photo-catalytic applications.  

 
2.2.2. Laser ablation 

In order to provide high energy to decompose large 

matter, high energy laser has imparted for the breaking 

down. Here, the surface of the matter gets etched with the 

high-energy beam laser, which can successively produce 

high temperature and pressure to melt the surface of the 

matter undergoes recrystallization to produce nanocarbon 

particles. Laser treatment of large carbon material produces 

small sized CDs with very less fluorescence properties 

Surface modification with polymers like polyethylene glycol 

(PEG1500N) and poly propionyl ethylenimine-co 

ethylenimine imparts fluorescence on the CDs surface.
47

 The 

fluorescence enhancement can be facilitated by passivating 

with inorganic salts like NaOH or Na2S. Moreover, the 

surface of the CDs can be modified by choosing the 

appropriate solvent on accordance with the property that 

require. The emission wavelength of the CDs can be tuned 

either by controlling the ablation duration or by altering the 

ablation and excitation laser wavelength. The laser ablation 

can be carried in vacuum, liquid or gaseous medium. In liquid 

medium, a part of the energy is absorbed by the liquid before 

the energy reaches to the matter been ablated. The CDs 

produces through the laser ablation is strong enough to tune 

the photoluminescence (PL) with different emission 

wavelength. Agglomeration helped to bring up to the 

particular PL that depends on the laser ablation duration.
48

 It 

is an effective method to synthesize CDs with high water 

solubility, good fluorescence character, and different 

morphologies. Nevertheless, the only default demerit of this 

method is requirement of large amount of carbon source 

material to ablate. As the laser ablation method is very 

adventitious in short period as well as ease of handling made 

the method been used by Sun et al. for the synthesis of 

CQDs from carbon cloth.
49

 Here they used homemade 

double beam pulse laser for effective synthesis. In order to 

increase the efficiency and time shortening, they divided the 

single laser beam into two parts. An intense thermionic 

electron emission after the coulomb explosion produces huge 

amount of temperature and pressure with electromagnetic 

fields exploit the carbon cloth on irradiation with laser. Within 

this high temperature and pressure, the carbon cloth split up 

to produce sp
2
 carbon domains. Which further group up with 

pyrolyzed substituent having oxygen and sulphur as the 

active elements on its surface. While, the second laser beam 

Table 1 

S. No. Synthetic 
approach 

Preparation 
method 

 Advantages Disadvantages Ref. 

1. Bottom-up Hydrothermal / 
Solvothermal 

High energy and unique 
pressure with tunable 
particle size as well as 
fluorescence  

Hard to synthesize CDs with 
hydrophobic nature 

39 

2. Bottom-up Combustion facile procedure, ease of 
scale-up production, precise 
controllable design of initial 
molecules, low cost, and 
environmental benign 
operation 

Need very high temperature 
56 

3. Bottom-up Microwave-assisted Short reaction time, uniform 
heating, lower instances of 
side reactions 
and fewer by-product 
formation, more uniform 
physical, chemical and 
optical 
properties and need very 
less purification steps 

 Restricted to small volumes, 
limited in large scale 
synthesis, 
reducing the usability of 
solvents with lower boiling 
points 

32 

4. Top-down Arc discharge Simple and inexpensive, 
possible to synthesize 
hydrophobic CDs 

Hard to purify the fragments 
obtained. Normally used for 
CNT synthesis, low yield, 
limited distribution 

47 

5. Top-down Laser ablation Easy passivation of the 
synthesized CDs  

High cost equipment and 
laser, produced a 
heterogeneous mixture of 
CDs with very less 
fluorescence 

57 

6. Top-down Electrochemical Ease of operation, 
abundance of raw materials, 
potential for mass 
production, low cost and not 
involving any harsh or toxic 
chemicals 

The purification of CDs is 
tedious. No formation of 
CDs with electrolytes as 
H2SO4/EtOH 

58 
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accelerated the probability of domain formation and promote 

35.4% photo luminescent CQDs. Silva et al. synthesized CDs 

with dimension of about 100 nm by UV pulsed laser ablation 

of carbon precursors dissolves in water.
50

 Thus synthesized 

CDs showed fluorescence after the functionalization with 

NH2-polyethylene-glycol (PEG200) and N-acetyl-L-cysteine 

(NAC). The prepared CDs displayed two major average size 

dispersions of about 63 and 373 nm and the smaller size was 

obtained from the laser ablation of bigger particles.   

 
 
2.2.3. Electrochemical method 

All the discussed methods need a high amount of 

thermal condition for effective working. While the 

electrochemical methods operate in normal temperature and 

pressure. Even though, the electrochemical method is known 

for its facile tuning the particle size as well as the 

photoluminescence.
51

 The CDs are formed through four steps 

like electro-oxidation, electro-polymerization, carbonization, 

and passivation. As the major types of CDs are more 

sensitive towards the pH of the solution, the CDs from the 

electrochemical method are also very much sensitive to pH 

by changing their fluorescence brightness with change in a 

pH.
51

  Zhang et al. synthesized blue fluorescent CDs through 

electrochemical carbonization of sodium citrate and urea for 

the effective sensing of Hg(II) in water.
52

 Usually, graphite or 

carbon rods are taken as the electrode for exfoliation. After 

the exfoliation, the crystal defect may happen by the removal 

of particles from the cathode and collectively dissolves in the 

corresponding electrolyte. The nanometer-sized carbon 

particle imparts good fluorescence. The size of the CDs 

majorly depends on the intensity of current applied in 

between the electrodes.
53

 Zhang et al. successfully 

synthesized the carbon nano dots from alcohols through 

electrochemical method.
54

 The uniformly formed CDs under 

electrolysis of small alcohol molecule in between two 

platinum rods act as both anode and cathode. As if the CDs 

preparation involves several combinations with ethanol, the 

alkaline combination with ethanol find good result on the 

production of efficient CDs. Strong blue luminescent 

nanocrystals developed by Ding et al. through 

electrochemical degassing of multiwalled carbon nanotube 

(MWCNT) of acrylonitrile solution with tetrabutylammonium 

perchlorate (TBAP) to synthesize CDs from MWCNTs.
55

 As-

obtained small nanocrystal on evaporation of acrylonitrile had 

a uniform spherical shape  and a narrow size distribution of 

2.8 to 0.5 nm in diameter. The MWCNT getting structure 

modulated through entangling or curled on electrochemical 

treatment, emphasising the surface area enhancement and 

there by the crystal deficiency.  As if the electrochemical 

method used for graphite or carbon rod, though the chances 

of synthesis of CDs from MWCNTs are inevitable. There are 

many studies have been going on with it.  

 
 

3. Conclusions 

In this review, the preparation of fluorescent CDs has 

studied well through various top-down and bottom-up 

synthetic approaches. The CDs contains high amount of 

carbon along with other elements such as oxygen, nitrogen, 

etc. Different type of functional groups including hydroxyl, 

carboxylic, amine, amide attach on the CDs surface resulting 

in surface passivation that result in enhancement of 

fluorescence property. Although there are many synthetic 

methods available for bright fluorescent CDs synthesis, still 

there is a large difference of QY between semiconductor QDs 

and CDs. Therefore, there is still a remaining challenge to 

further improvement of QY of CDs. It can be anticipated that 

increasing effort and detailed study will create a progressive 

room for high quality CDs synthesis for various application.  
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